Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Mekkaoui, K.; Baral, R.; Smith, F.; Klein, M.; Feussner, I.; Hause, B.;Unraveling the role of 12-cis-oxo-phytodienoic acid in the wound response of Arabidopsis thaliana: Insights from transcriptomic and complementation studiesbioRxiv(2024)DOI: 10.1101/2024.03.22.586262
In addition to jasmonoyl-isoleucine (JA-Ile), a well-established signaling molecule for plant growth and defense, its precursor, cis-12-oxo-phytodienoic acid (OPDA), is thought to possess independent signaling functions. Its perception in vascular plants is still uncharacterized. Several OPDA functions in Arabidopsis were inferred from a mutant that is affected in the function of the OPDA REDUCTASE3 (OPR3), catalyzing the conversion of OPDA within peroxisomes. Recently, opr3 plants were found to accumulate JA-Ile via a cytosolic OPR2-mediated bypass. Given the uncoupling of OPDA and JA biosynthesis in the JA-deficient mutant opr2opr3, potential OPDA signaling was investigated by a transcriptome approach comparing wild type, opr2opr3 and the JA- and OPDA-deficient mutantallene oxide synthase. Dissecting the wound response of seedlings revealed that OPDA lacked a transcriptional signature, and that previously characterized OPDA-response genes were wound-induced independently of OPDA. Exogenous application of OPDA to opr2opr3 seedlings led to JA-Ile formation and signaling even in absence of OPR2 and OPR3 and resulted in activation of sulfur assimilation. These divergent responses to endogenously synthesized and applied OPDA suggest a compartmentalization of endogenous OPDA which was investigated by a trans-organellar complementation approach. OPR3 complemented the opr2opr3 mutant in terms of fertility and wound-induced JA-Ile production irrespective of its subcellular localization. In vitro enzymatic activity of OPR3, however, showed conversion of OPDA and 4,5-didehydro-JA (4,5-ddh-JA), therefore not allowing to conclude which compound is translocated. Dissecting the conversion of either OPDA or 4,5-ddh-JA by OPR2 and OPR1 organelle variants pointed to a strong OPDA compartmentalization supporting its lacking signaling capacity.
Publikation
Lee Erickson, J.; Prautsch, J.; Reynvoet, F.; Niemeyer, F.; Hause, G.; Johnston, I. G.; Schattat, M. H.;Stromule geometry allows optimal spatial regulation of organelle interactions in the quasi-2D cytoplasmPlant Cell Physiol.65618–630(2024)DOI: 10.1093/pcp/pcad098
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Publikation
Jäckel, L.; Schnabel, A.; Stellmach, H.; Klauß, U.; Matschi, S.; Hause, G.; Vogt, T.;The terminal enzymatic step in piperine biosynthesis is co‐localized with the product piperine in specialized cells of black pepper (Piper nigrum
L.)Plant J.111731–747(2022)DOI: 10.1111/tpj.15847
Piperine (1-piperoyl piperidine) is responsible for the pungent perception of dried black pepper (Pipernigrum) fruits and essentially contributes to the aromatic properties of this spice in combination with ablend of terpenoids. The final step in piperine biosynthesis involves piperine synthase (PS), which catalyzesthe reaction of piperoyl CoA and piperidine to the biologically active and pungent amide. Nevertheless, experimental data on the cellular localization of piperine and the complete biosynthetic pathway are missing. Not only co-localization of enzymes and products, but also potential transport of piperamides to thesink organs is a possible alternative. This work, which includes purification of the native enzyme, immunolocalization, laser microdissection, fluorescence microscopy, and electron microscopy combinedwith liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), providesexperimental evidence that piperine and PS are co-localized in specialized cells of the black pepper fruit peri-sperm. PS accumulates during early stages of fruit development and its level declines before the fruits arefully mature. The product piperine is co-localized to PS and can be monitored at the cellular level by itsstrong bluish fluorescence. Rising piperine levels during fruit maturation are consistent with the increasingnumbers of fluorescent cells within the perisperm. Signal intensities of individual laser-dissected cells whenmonitored by LC-ESI-MS/MS indicate molar concentrations of this alkaloid. Significant levels of piperineand additional piperamides were also detected in cells distributed in the cortex of black pepper roots. Insummary, the data provide comprehensive experimental evidence of and insights into cell-specific biosyn-thesis and storage of piperidine alkaloids, specific and characteristic for the Piperaceae. By a combination offluorescence microscopy and LC-MS/MS analysis we localized the major piperidine alkaloids to specific cellsof the fruit perisperm and the root cortex. Immunolocalization of native piperine and piperamide synthasesshows that enzymes are co-localized with high concentrations of products in these idioblasts.
Publikation
He, J.; Yang, B.; Hause, G.; Rössner, N.; Peiter-Volk, T.; Schattat, M. H.; Voiniciuc, C.; Peiter, E.;The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesisPlant Physiol.1902579-2600(2022)DOI: 10.1093/plphys/kiac387
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.