Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
A crucial feature of plant performance is its strong dependence on the availability of essential mineral nutrients, affecting multiple vital functions. Indeed, mineral-nutrient deficiency is one of the major stress factors affecting plant growth and development. Thereby, nitrogen and potassium represent the most abundant mineral contributors, critical for plant survival. While studying plant responses to nutrient deficiency, one should keep in mind that mineral nutrients, along with their specific metabolic roles, are directly involved in maintaining cell ion homeostasis, which relies on a finely tuned equilibrium between cytosolic and vacuolar ion pools. Therefore, in this chapter we briefly summarize the role of the ion homeostasis system in cell responses to environmental deficiency of nitrate and potassium ions. Special attention is paid to the implementation of plant responses via NO3− and K+ root transport and regulation of ion distribution in cell compartments. These responses are strongly dependent on plant species, as well as severity and duration of nutrient deficiency.
Publikation
Pantelić, N. ?.; Lerbs, M.; Wolf, K.; Wessjohann, L. A.; Kaluđerović, G. N.;In vitro anticancer evaluation of novel triphenyltin(IV) compounds with some N-acetyl-S-(naphthoquinone)cysteine derivativesJ. Serb. Chem. Soc.841119-1127(2019)DOI: 10.2298/JSC190322032P
Triphenyltin(IV) compounds with naphthoquinone derivatives containing N-acetylcysteine, N-acetyl-S-(1,2-dion-4-naphthyl)cysteine (1,2-NQC), 1, and N-acetyl-S-(1,4-dion-2-naphthyl)cysteine (1,4-NQC), 2, were synthesized and characterized by elemental microanalysis, IR, multinuclear (1H, 13C, 119Sn) NMR spectroscopy as well as HR-ESI mass spectrometry. With the aim of in vitro anticancer activity determination of ligand precursors and novel synthesized organotin(IV) compounds against human cervix adenocarcinoma (HeLa), human colon carcinoma (HT-29), and melanoma carcinoma cell line (B16F10), MTT colorimetric assay method was applied. The results indicate that synthesized compounds exhibited remarkable antiproliferative activity toward all tested cell lines with IC50 in the range of 0.17 to 0.87 μM. Complex 1 showed the greatest activity against HT-29 cells, with IC50 value of 0.21 ± 0.01 μM, 119 times better than cisplatin, while complex 2 demonstrated the highest activity toward HeLa cells, IC50 = 0.17 ± 0.01 μM, which is ~26 times better than cisplatin.
Publikation
Nganou, B. K.; Mbaveng, A. T.; Fobofou, S. A. T.; Fankam, A. G.; Bitchagno, G. T. M.; Simo Mpetga, J. D.; Wessjohann, L. A.; Kuete, V.; Efferth, T.; Tane, P.;Furoquinolines and dihydrooxazole alkaloids with cytotoxic activity from the stem bark of Araliopsis soyauxiiFitoterapia133193-199(2019)DOI: 10.1016/j.fitote.2019.01.003
Two new furoquinoline alkaloids, maculine B (1) and kokusaginine B (2) and one new dihydrooxazole alkaloid, veprisazole (3), along with four known compounds namely, N13-methyl-3-methoxyrutaecarpine (4), flindersiamine (5), skimmianine (6) and tilianin (7) were isolated from the methanol extract of the stem bark of Araliopsis soyauxii Engl. by various chromatographic methods. Their structures were determined using spectrometry and spectroscopic techniques including NMR and MS. The cytotoxicity of the new compounds compared to that of doxorubicin, the reference anticancer compound, was determined on a panel of nine cancer cell lines including sensitive and drug resistant phenotypes. The three previously undescribed alkaloids displayed selective activities. Maculine B (1), the most active one among the newly described compounds, exhibited IC50 below 30 μM against CCRF-CEM leukemia and U87MG glioblastoma cells.
Publikation
Lam, Y. T. H.; Palfner, G.; Lima, C.; Porzel, A.; Brandt, W.; Frolov, A.; Sultani, H.; Franke, K.; Wagner, C.; Merzweiler, K.; Wessjohann, L. A.; Arnold, N.;Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxaPhytochemistry165112048(2019)DOI: 10.1016/j.phytochem.2019.05.021
For the first time, the pigment composition of basidiocarps from the Chilean mushroom Cortinarius pyromyxa was studied under various aspects like phylogeny, chemistry and antibiotic activity. A molecular biological study supports the monotypic position of C. pyromyxa in subgenus Myxacium, genus Cortinarius. Four undescribed diterpenoids, named pyromyxones A-D, were isolated from fruiting bodies of C. pyromyxa. Their chemical structures were elucidated based on comprehensive one- and two-dimensional NMR spectroscopic analysis, ESI-HRMS measurements, as well as X-ray crystallography. In addition, the absolute configurations of pyromyxones A-D were established with the aid of JH,H, NOESY spectra and quantum chemical CD calculation. The pyromyxones A-D possess the undescribed nor-guanacastane skeleton. Tested pyromyxones A, B, and D exhibit only weak activity against gram-positive Bacillus subtilis and gram-negative Aliivibrio fischeri as well as the phytopathogenic fungi Botrytis cinerea, Septoria tritici and Phytophthora infestans.