Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.
Publikation
Ebeler, S. E.; Dingley, K. H.; Ubick, E.; Abel, S.; Mitchell, A. E.; Burns, S. A.; Steinberg, F. M.; Clifford, A. J.;Animal Models and Analytical Approaches for Understanding the Relationships Between Wine and CancerDrugs Exp. Clin. Res.3119-27(2005)
We used two approaches for studying the relationships between wine consumption, wine composition and cancer In the first approach, a transgenic mouse model of human neurofibromatosis, combined with the use of well-defined, chemically purified diets, showed that red wine contains nonalcoholic components that can delay tumor onset. In additional studies, catechin, the main monomeric polyphenol of red wine, delayed tumor onset in this mouse model in a positive, linear relationship when incorporated into the diet at levels of 0.5-4 mmol/kg diet. In the second approach, low doses of the chemical carcinogen 2-amino-1-methyl-6-phenylimidazo(4, 5-b)pyridine (PhlP) were administered to rats, and formation of DNA adducts was evaluated by accelerator mass spectrometry. Consumption of red wine solids (the residue from red wine remaining after removal of alcohol and water) and the wine polyphenol quercetin did not influence PhlP-DNA adduct levels or induce liver enzymes (glutathione-S-transferase and quinone reductase). However, quercetin did alter distribution of PhlP in the rat tissues compared to control animals and animals fed other potential dietary chemopreventive agents, including phenylethyl isothiocyanate and sulforaphane. These studies demonstrate the feasibility of these approaches for studying the chemopreventive potential of dietary components at physiologic levels in