Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Peters, K.; Blatt-Janmaat, K. L.; Tkach, N.; Dam, N. M.; Neumann, S.;Untargeted metabolomics for integrative taxonomy: Metabolomics, DNA marker-based sequencing, and phenotype bioimagingPlants12881(2023)DOI: 10.3390/plants12040881
Integrative taxonomy is a fundamental part of biodiversity and combines traditional morphology with additional methods such as DNA sequencing or biochemistry. Here, we aim to establish untargeted metabolomics for use in chemotaxonomy. We used three thallose liverwort species Riccia glauca, R. sorocarpa, and R. warnstorfii (order Marchantiales, Ricciaceae) with Lunularia cruciata (order Marchantiales, Lunulariacea) as an outgroup. Liquid chromatography high-resolution mass-spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) were integrated with DNA marker-based sequencing of the trnL-trnF region and high-resolution bioimaging. Our untargeted chemotaxonomy methodology enables us to distinguish taxa based on chemophenetic markers at different levels of complexity: (1) molecules, (2) compound classes, (3) compound superclasses, and (4) molecular descriptors. For the investigated Riccia species, we identified 71 chemophenetic markers at the molecular level, a characteristic composition in 21 compound classes, and 21 molecular descriptors largely indicating electron state, presence of chemical motifs, and hydrogen bonds. Our untargeted approach revealed many chemophenetic markers at different complexity levels that can provide more mechanistic insight into phylogenetic delimitation of species within a clade than genetic-based methods coupled with traditional morphology-based information. However, analytical and bioinformatics analysis methods still need to be better integrated to link the chemophenetic information at multiple scales.
Publikation
Agzamova, M. A.; Mamadalieva, N. Z.; Mamadalieva, N.; Porzel, A.; Hussain, H.; Dube, M.; Franke, K.; Janibekov, A.; Wessjohann, L. A.;Lehmanniaside, a new cycloartane triterpene glycoside from Astragalus lehmannianusNat. Prod. Res.37354-359(2023)DOI: 10.1080/14786419.2021.1969563
Chemical investigation of the aerial parts of Astragalus lehmannianus
Bunge (Leguminosae) led to the isolation and identification of a new
cycloartane triterpene glycoside – lehmanniaside (2\'-O-acetyl-3-β-O-D-xylopyranosyl-3β,6α,16β,24α-tetrahydroxy-20,25-epoxycycloartane).
Its structure was elucidated by means of spectroscopic analysis (HR-MS,
1D and 2D NMR). Bioassays showed that lehmanniaside exhibits weak
anthelmintic, antifungal, and cytotoxic activities.
Publikation
Fobofou, S. A. T.; Franke, K.; Brandt, W.; Manzin, A.; Madeddu, S.; Serreli, G.; Sanna, G.; Wessjohann, L. A.;Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianumNat. Prod. Res.371947-1953(2023)DOI: 10.1080/14786419.2022.2110094
Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored Hypericum species, a previously undescribed atropisomeric C8-C8’ linked dimeric coumarin named bichromonol (1) was isolated from the stem bark of Hypericum roeperianum. The structure was elucidated by MS data and NMR spectroscopy. The absolute configuration at the biaryl axis was determined by comparing the experimental ECD spectrum with those calculated for the respective atropisomers. Bichromonol was tested in cell-based assays for cytotoxicity against MT-4 (CC50 ¼ 54 mM) cells and anti-HIV activity in infected MT-4 cells. It exhibits significant activity at EC50 ¼ 6.6–12.0 mM against HIV-1 wild type and its clinically relevant mutant strains. Especially, against the resistant variants A17 and EFVR, bichromonol is more effective than the commercial drug nevirapine and might thus have potential to serve as a new anti-HIV lead.
Publikation
Degtyaryov, E.; Pigolev, A.; Miroshnichenko, D.; Frolov, A.; Basnet, A. T.; Gorbach, D.; Leonova, T.; Pushin, A. S.; Alekseeva, V.; Dolgov, S.; Savchenko, T.;12-Oxophytodienoate reductase overexpression compromises tolerance to Botrytis cinerea in hexaploid and tetraploid wheatPlants122050(2023)DOI: 10.3390/plants12102050
12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.