Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quanti-fied after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Publikation
Lohse, S.; Hause, B.; Hause, G.; Fester, T.;FtsZ Characterization and Immunolocalization in the Two Phases of Plastid Reorganization in Arbuscular Mycorrhizal Roots of Medicago truncatulaPlant Cell Physiol.471124-1134(2006)DOI: 10.1093/pcp/pcj083
We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.
Publikation
Schaarschmidt, S.; Qu, N.; Strack, D.; Sonnewald, U.; Hause, B.;Local Induction of the alc Gene Switch in Transgenic Tobacco Plants by AcetaldehydePlant Cell Physiol.451566-1577(2004)DOI: 10.1093/pcp/pch177
The alc promoter system, derived from the filamentous fungi Aspergillus nidulans, allows chemically regulated gene expression in plants and thereby the study of gene function as well as metabolic and developmental processes. In addition to ethanol, this system can be activated by acetaldehyde, described as the physiological inducer in A. nidulans. Here, we show that in contrast to ethanol, acetaldehyde allows tissue-specific activation of the alc promoter in transgenic tobacco plants. Soil drenching with aqueous acetaldehyde solutions at a concentration of 0.05% (v/v) resulted in the rapid and temporary induction of the alc gene expression system exclusively in roots. In addition, the split root system allows activation to be restricted to the treated part of the root. The temporary activation of the alc system by soil drenching with acetaldehyde could be prolonged over several weeks by subsequent applications at intervals of 7 d. This effect was demonstrated for the root-specific induction of a yeast-derived apoplast-located invertase under the control of the alcohol-inducible promoter system. In leaves, which exhibit a lower responsiveness to acetaldehyde than roots, the alc system was induced in the directly treated tissue only. Thus, acetaldehyde can be used as a local inducer of the alc gene expression system in tobacco plants.
Publikation
Doll, J.; Hause, B.; Demchenko, K.; Pawlowski, K.; Krajinski, F.;A Member of the Germin-Like Protein Family is a Highly Conserved Mycorrhiza-Specific Induced GenePlant Cell Physiol.441208-1214(2003)DOI: 10.1093/pcp/pcg153
A Medicago truncatula cDNA encoding a germin-like protein (GLP) was isolated from a suppression subtractive hybridization cDNA library enriched for arbuscular mycorrhiza (AM)-induced genes. The MtGLP1 amino acid sequence shows some striking differences to previously described plant GLP sequences and might therefore represent a new subgroup of this multigene family. The MtGlp1 mRNA was strongly induced in roots and root cultures colonized by the AM fungus Glomus intraradices. Whereas MtGlp1 is strongly induced in AM, no transcripts of the gene were detected in non-infected roots or in roots after infection with the oomycete root pathogen Aphanomyces euteiches or with Rhizobia. Increased phosphate levels during fertilization also could not stimulate MtGlp1 transcription. Hence, MtGlp1 induction seems to be an AM-specific phenomenon. In situ hybridization showed that MtGlp1 is localized in arbuscule containing cells. A putative orthologue of this AM-specific GLP gene could be localized in a second legume Lotus japonicus, indicating that the regulation of a member of the GLP family belongs to a conserved mechanism in AM regulation in different plant species.