Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Zulfiqar, M.; Crusoe, M. R.; König-Ries, B.; Steinbeck, C.; Peters, K.; Gadelha, L.;Implementation of FAIR practices in computational metabolomics workflows—A case studyMetabolites14118(2024)DOI: 10.3390/metabo14020118
Scientific workflows facilitate the automation of data analysis tasks by integrating various software and tools executed in a particular order. To enable transparency and reusability in workflows, it is essential to implement the FAIR principles. Here, we describe our experiences implementing the FAIR principles for metabolomics workflows using the Metabolome Annotation Workflow (MAW) as a case study. MAW is specified using the Common Workflow Language (CWL), allowing for the subsequent execution of the workflow on different workflow engines. MAW is registered using a CWL description on WorkflowHub. During the submission process on WorkflowHub, a CWL description is used for packaging MAW using the Workflow RO-Crate profile, which includes metadata in Bioschemas. Researchers can use this narrative discussion as a guideline to commence using FAIR practices for their bioinformatics or cheminformatics workflows while incorporating necessary amendments specific to their research area.
Publikation
Dahiya, P.; Bürstenbinder, K.;The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-upCurr. Opin. Plant Biol.73102366(2023)DOI: 10.1016/j.pbi.2023.102366
The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Publikation
Chalo, D. M.; Franke, K.; Nchiozem-Ngnitedem, V.-A.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Kloss, F.; Yenesew, A.; Wessjohann, L. A.;Prenylated isoflavanones with antimicrobial potential from the root bark of Dalbergia melanoxylonMetabolites13678(2023)DOI: 10.3390/metabo13060678
Dalbergia melanoxylon Guill. & Perr (Fabaceae) is widely utilized in the traditional medicine of East Africa, showing effects against a variety of ailments including microbial infections. Phytochemical investigation of the root bark led to the isolation of six previously undescribed prenylated isoflavanones together with eight known secondary metabolites comprising isoflavanoids, neoflavones and an alkyl hydroxylcinnamate. Structures were elucidated based on HR-ESI-MS, 1- and 2-D NMR and ECD spectra. The crude extract and the isolated compounds of D. melanoxylon were tested for their antibacterial, antifungal, anthelmintic and cytotoxic properties, applying established model organisms non-pathogenic to humans. The crude extract exhibited significant antibacterial activity against Gram-positive Bacillus subtilis (97% inhibition at 50 μg/mL) and antifungal activity against the phytopathogens Phytophthora infestans, Botrytis cinerea and Septoria tritici (96, 89 and 73% at 125 μg/mL, respectively). Among the pure compounds tested, kenusanone H and (3R)-tomentosanol B exhibited, in a panel of partially human pathogenic bacteria and fungi, promising antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium showing MIC values between 0.8 and 6.2 μg/mL. The observed biological effects support the traditional use of D. melanoxylon and warrant detailed investigations of its prenylated isoflavanones as antibacterial lead compounds.