Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Tahara, K.; Nishiguchi, M.; Funke, E.; Miyazawa, S.-I.; Miyama, T.; Milkowski, C.;Dehydroquinate dehydratase/shikimate dehydrogenases involved in gallate biosynthesis of the aluminum-tolerant tree species Eucalyptus camaldulensisPlanta2533(2021)DOI: 10.1007/s00425-020-03516-w
The tree species Eucalyptus camaldulensis shows exceptionally high tolerance against aluminum, a widespread toxic metal in acidic soils. In the roots of E. camaldulensis, aluminum is detoxified via the complexation with oenothein B, a hydrolyzable tannin. In our approach to elucidate the biosynthesis of oenothein B, we here report on the identification of E. camaldulensis enzymes that catalyze the formation of gallate, which is the phenolic constituent of hydrolyzable tannins. By systematical screening of E. camaldulensis dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDHs), we found two enzymes, EcDQD/SDH2 and 3, catalyzing the NADP+-dependent oxidation of 3-dehydroshikimate to produce gallate. Based on extensive in vitro assays using recombinant EcDQD/SDH2 and 3 enzymes, we present for the first time a detailed characterization of the enzymatic gallate formation activity, including the cofactor preferences, pH optima, and kinetic constants. Sequence analyses and structure modeling suggest the gallate formation activity of EcDQD/SDHs is based on the reorientation of 3-dehydroshikimate in the catalytic center, which facilitates the proton abstraction from the C5 position. Additionally, EcDQD/SDH2 and 3 maintain DQD and SDH activities, resulting in a 3-dehydroshikimate supply for gallate formation. In E. camaldulensis, EcDQD/SDH2 and 3 are co-expressed with UGT84A25a/b and UGT84A26a/b involved in hydrolyzable tannin biosynthesis. We further identified EcDQD/SDH1 as a “classical” bifunctional plant shikimate pathway enzyme and EcDQD/SDH4a/b as functional quinate dehydrogenases of the NAD+/NADH-dependent clade. Our data indicate that in E. camaldulensis the enzymes EcDQD/SDH2 and 3 provide the essential gallate for the biosynthesis of the aluminum-detoxifying metabolite oenothein B.
Publikation
Trempel, F.; Eschen‐Lippold, L.; Bauer, N.; Ranf, S.; Westphal, L.; Scheel, D.; Lee, J.;A mutation in Asparagine‐Linked Glycosylation 12 (ALG12) leads to receptor misglycosylation and attenuated responses to multiple microbial elicitorsFEBS Lett.5942440-2451(2020)DOI: 10.1002/1873-3468.13850
Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana ‘changed calcium elevation 1 ’ (cce1 ) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole genome re‐sequencing revealed a mutation in ALG12 (Asparagine‐Linked Glycosylation 12 ) that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α‐1,6 linkage to the dolichol‐PP‐oligosaccharide N ‐glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N ‐glycosylation is required for proper functioning of client proteins.
Publikation
Nganou, B. K.; Mbaveng, A. T.; Fobofou, S. A. T.; Fankam, A. G.; Bitchagno, G. T. M.; Simo Mpetga, J. D.; Wessjohann, L. A.; Kuete, V.; Efferth, T.; Tane, P.;Furoquinolines and dihydrooxazole alkaloids with cytotoxic activity from the stem bark of Araliopsis soyauxiiFitoterapia133193-199(2019)DOI: 10.1016/j.fitote.2019.01.003
Two new furoquinoline alkaloids, maculine B (1) and kokusaginine B (2) and one new dihydrooxazole alkaloid, veprisazole (3), along with four known compounds namely, N13-methyl-3-methoxyrutaecarpine (4), flindersiamine (5), skimmianine (6) and tilianin (7) were isolated from the methanol extract of the stem bark of Araliopsis soyauxii Engl. by various chromatographic methods. Their structures were determined using spectrometry and spectroscopic techniques including NMR and MS. The cytotoxicity of the new compounds compared to that of doxorubicin, the reference anticancer compound, was determined on a panel of nine cancer cell lines including sensitive and drug resistant phenotypes. The three previously undescribed alkaloids displayed selective activities. Maculine B (1), the most active one among the newly described compounds, exhibited IC50 below 30 μM against CCRF-CEM leukemia and U87MG glioblastoma cells.
Publikation
Corrêa dos Santos, C. H.; Talpo, T. C.; Pereira Motta, B.; Kiyoshi Kaga, A.; Martins Baviera, A.; Nora Castro, R.; da Silva, V. C.; Teixeira de Sousa-Junior, P.; Wessjohann, L.; Geraldo de Carvalho, M.;New compounds of Siolmatra brasiliensis and inhibition of in vitro protein glycation damageFitoterapia133109-119(2019)DOI: 10.1016/j.fitote.2018.12.023
Twenty compounds were isolated from the hydroethanolic extract of the stems of Siolmatra brasiliensis, five flavonoids, two lignans, one glucosyl phytosterol, seven nor-cucurbitacins, one new phenolic derivative named siolmatrin (1) and four new dammarane-type saponins named siolmatrosides II-V (2–5), the structures of the compounds were assigned by means of 1D and 2D NMR experiments and HRESIMS of the natural compounds and some acetyl derivatives. The effects of the crude hydroethanolic extract (SbExt) and the ethyl acetate fraction (SbEtAc) of Siolmatra brasiliensis stems on the formation of advanced glycation end-products (AGEs) were also investigated. In the in vitro model system of protein glycation using bovine serum albumin (BSA) and glucose, addition of SbExt or SbEtAc inhibited the formation of fluorescent AGEs, in parallel to minor levels of fructosamine (SbEtAc) and markers of tyrosine and tryptophan oxidation (SbExt and SbEtAc). Protein crosslinking, which represents changes of late stages of protein glycation, was reduced in the presence of SbExt and SbEtAc. Siolmatra brasiliensis stems seem to be a promising source of compounds having ability to prevent glycoxidation changes, arising as an interesting option to be studied as a complementary therapy for complications of diabetes.