Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Pedranzani, H.; Rodríguez-Rivera, M.; Gutiérrez, M.; Porcel, R.; Hause, B.; Ruiz-Lozano, J. M.;Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levelsMycorrhiza26141-152(2016)DOI: 10.1007/s00572-015-0653-4
This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.
Publikation
Hilou, A.; Zhang, H.; Franken, P.; Hause, B.;Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches?Mycorrhiza2445-54(2014)DOI: 10.1007/s00572-013-0513-z
Bioprotective effects of mycorrhization with two different arbuscular mycorrhizal (AM) fungi, Funneliformis mosseae and Rhizophagus irregularis, against Aphanomyces euteiches, the causal agent of root rot in legumes, were studied in Medicago truncatula using phenotypic and molecular markers. Previous inoculation with an AM-fungus reduced disease symptoms as well as the amount of pathogen within roots, as determined by the levels of A. euteiches rRNA or transcripts of the gene sterol C24 reductase. Inoculation with R. irregularis was as efficient as that with F. mosseae. To study whether jasmonates play a regulatory role in bioprotection of M. truncatula by the AM fungi, composite plants harboring transgenic roots were used to modulate the expression level of the gene encoding M. truncatula allene oxide cyclase 1, a key enzyme in jasmonic acid biosynthesis. Neither an increase nor a reduction in allene oxide cyclase levels resulted in altered bioprotection by the AM fungi against root infection by A. euteiches. These data suggest that jasmonates do not play a major role in the local bioprotective effect of AM fungi against the pathogen A. euteiches in M. truncatula roots.
Publikation
Farag, M. A.; Wessjohann, L. A.;Volatiles Profiling in Medicinal Licorice Roots Using Steam Distillation and Solid-Phase Microextraction (SPME) Coupled to ChemometricsJ. Food Sci.77C1179-C1184(2012)DOI: 10.1111/j.1750-3841.2012.02927.x
Abstract: Licorice (Glycyrrhiza glabra L.) is a plant of considerable commercial importance in traditional medicine and for the flavor and sweets industry. Although Glycyrrhiza species are very competitive targets for phytochemical studies, very little is known about the volatiles composition within that genus, although such knowledge can be suspected to be relevant for understanding the olfactory and taste properties. To provide insight into Glycyrrhiza species aroma composition and for its use in food and pharmaceutical industry, volatile constituents from G. glabra, G. inflata, and G. echinata roots were profiled using steam distillation and solid‐phase microextraction. Two phenols, thymol and carvacrol, were found exclusively in essential oil and headspace samples of G. glabra, and with highest amounts for samples that originated from Egypt. In G. echinata oil, (2E, 4E)‐decadienal (21%) and β‐caryophyllene oxide (24%) were found as main constituents, whereas 1α, 10α‐epoxyamorpha‐4‐ene (13%) and β‐dihydroionone (8%) predominated G. inflata. Principal component and hierarchical cluster analyses clearly separated G. echinata and G. inflata from G. glabra; with phenolics and aliphatic aldehydes contributing mostly for species segregation.Practical Application: Licorice (Glycyrrhiza glabra) has large economic, nutritional, and medicinal values. The data presented in this article help in licorice quality control analysis to identify G. glabra from its closely allied species. The presence of thymol and carvacrol exclusively in G. glabra suggests that these volatiles could serve as chemotaxonomic markers and also might be considered as potentially relevant for taste.
Publikation
Leitner, M.; Kaiser, R.; Hause, B.; Boland, W.; Mithöfer, A.;Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula?Mycorrhiza2089-101(2010)DOI: 10.1007/s00572-009-0264-z
Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date.