Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Zulfiqar, M.; Crusoe, M. R.; König-Ries, B.; Steinbeck, C.; Peters, K.; Gadelha, L.;Implementation of FAIR practices in computational metabolomics workflows—A case studyMetabolites14118(2024)DOI: 10.3390/metabo14020118
Scientific workflows facilitate the automation of data analysis tasks by integrating various software and tools executed in a particular order. To enable transparency and reusability in workflows, it is essential to implement the FAIR principles. Here, we describe our experiences implementing the FAIR principles for metabolomics workflows using the Metabolome Annotation Workflow (MAW) as a case study. MAW is specified using the Common Workflow Language (CWL), allowing for the subsequent execution of the workflow on different workflow engines. MAW is registered using a CWL description on WorkflowHub. During the submission process on WorkflowHub, a CWL description is used for packaging MAW using the Workflow RO-Crate profile, which includes metadata in Bioschemas. Researchers can use this narrative discussion as a guideline to commence using FAIR practices for their bioinformatics or cheminformatics workflows while incorporating necessary amendments specific to their research area.
Publikation
Chalo, D. M.; Franke, K.; Nchiozem-Ngnitedem, V.-A.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Kloss, F.; Yenesew, A.; Wessjohann, L. A.;Prenylated isoflavanones with antimicrobial potential from the root bark of Dalbergia melanoxylonMetabolites13678(2023)DOI: 10.3390/metabo13060678
Dalbergia melanoxylon Guill. & Perr (Fabaceae) is widely utilized in the traditional medicine of East Africa, showing effects against a variety of ailments including microbial infections. Phytochemical investigation of the root bark led to the isolation of six previously undescribed prenylated isoflavanones together with eight known secondary metabolites comprising isoflavanoids, neoflavones and an alkyl hydroxylcinnamate. Structures were elucidated based on HR-ESI-MS, 1- and 2-D NMR and ECD spectra. The crude extract and the isolated compounds of D. melanoxylon were tested for their antibacterial, antifungal, anthelmintic and cytotoxic properties, applying established model organisms non-pathogenic to humans. The crude extract exhibited significant antibacterial activity against Gram-positive Bacillus subtilis (97% inhibition at 50 μg/mL) and antifungal activity against the phytopathogens Phytophthora infestans, Botrytis cinerea and Septoria tritici (96, 89 and 73% at 125 μg/mL, respectively). Among the pure compounds tested, kenusanone H and (3R)-tomentosanol B exhibited, in a panel of partially human pathogenic bacteria and fungi, promising antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium showing MIC values between 0.8 and 6.2 μg/mL. The observed biological effects support the traditional use of D. melanoxylon and warrant detailed investigations of its prenylated isoflavanones as antibacterial lead compounds.
Publikation
Camargo, F. D. G.; Santamaria-Torres, M.; Cala, M. P.; Guevara-Suarez, M.; Restrepo, S.; Sánchez-Camargo, A.; Fernández-Niño, M.; Corujo, M.; Gallo Molina, A. C.; Cifuentes, J.; Serna, J. A.; Cruz, J. C.; Muñoz-Camargo, C.; Barrios, A. F. G.;Genome-scale metabolic reconstruction, non-targeted LC-QTOF-MS based metabolomics data, and evaluation of anticancer activity of Cannabis sativa leaf extractsMetabolites13788(2023)DOI: 10.3390/metabo13070788
Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.
Publikation
Humpierre, A. R.; Zanuy, A.; Saenz, M.; Vasco, A. V.; Méndez, Y.; Westermann, B.; Cardoso, F.; Quintero, L.; Santana, D.; Verez, V.; Valdés, Y.; Rivera, D. G.; Garrido, R.;Quantitative NMR for the structural analysis of novel bivalent glycoconjugates as vaccine candidatesJ. Pharm. Biomed. Anal.214114721(2022)DOI: 10.1016/j.jpba.2022.114721
Novel unimolecular bivalent glycoconjugates were assembled combining several functionalized capsular polysaccharides of Streptococcus pneumoniae and Neisseria meningitidis to a carrier protein by using an effective strategy based on the Ugi 4-component reaction. The development of multivalent glycoconjugates opens new opportunities in the field of vaccine design, but their high structural complexity involves new analytical challenges. Nuclear Magnetic Resonance has found wide applications in the characterization and impurity profiling of carbohydrate-based vaccines. Eight bivalent conjugates were studied by quantitative NMR analyzing the structural identity, the content of each capsular polysaccharide, the ratios between polysaccharides, the polysaccharide to protein ratios and undesirable contaminants. The qNMR technique involves experiments with several modified parameters for obtaining spectra with quantifiable signals. In addition, the achieved NMR results were combined with the results of colorimetric assay and Size Exclusion HPLC for assessing the protein content and free protein percentage, respectively. The application of quantitative NMR showed to be efficient to clear up the new structural complexities while allowing the quantitative assessment of the components.