Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Farag, M. A.; Zayed, A.; Sallam, I. E.; Abdelwareth, A.; Wessjohann, L. A.;Metabolomics-based approach for coffee beverage improvement in the context of processing, brewing methods, and quality attributesFoods11864(2022)DOI: 10.3390/foods11060864
Coffee is a worldwide beverage of increasing consumption, owing to its unique flavor and several health benefits. Metabolites of coffee are numerous and could be classified on various bases, of which some are endogenous to coffee seeds, i.e., alkaloids, diterpenes, sugars, and amino acids, while others are generated during coffee processing, for example during roasting and brewing, such as furans, pyrazines, and melanoidins. As a beverage, it provides various distinct flavors, i.e., sourness, bitterness, and an astringent taste attributed to the presence of carboxylic acids, alkaloids, and chlorogenic acids. To resolve such a complex chemical makeup and to relate chemical composition to coffee effects, large-scale metabolomics technologies are being increasingly reported in the literature for proof of coffee quality and efficacy. This review summarizes the applications of various mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolomics technologies in determining the impact of coffee breeding, origin, roasting, and brewing on coffee chemical composition, and considers this in relation to quality control (QC) determination, for example, by classifying defected and non-defected seeds or detecting the adulteration of raw materials. Resolving the coffee metabolome can aid future attempts to yield coffee seeds of desirable traits and best flavor types.
Publikation
Farag, M. A.; Abdelwareth, A.; Zayed, A.; Eissa, T. F.; Dokalahy, E.; Frolov, A.; Wessjohann, L. A.;A comparative metabolomics approach for Egyptian mango fruits classification based on UV and UPLC/MS and in relation to its antioxidant effectFoods112127(2022)DOI: 10.3390/foods11142127
Mango (Mangifera indica L.) is a tropical climacteric fruit that encompasses a myriad of metabolites mediating for its nutritive value, unique taste, flavor, and medicinal uses. Egypt is among the top mango producers worldwide, albeit little characterization has been made toward its fruits’ chemical composition. This study aims to assess metabolites difference via comparative profiling and fingerprinting of Egyptian mango in context to its cultivar (cv.) type and/or growth province. To achieve such goal, hyphenated chromatographic techniques (UPLC/MS) and UV spectroscopy were employed and coupled to multivariate data analysis for Egyptian mango fruits’ classification for the first time. UPLC/MS led to the detection of a total of 47 peaks identified based on their elution times and MS data, belonging to tannins as gallic acid esters, flavonoids, xanthones, phenolic acids and oxylipids. UV/Vis spectra of mango fruits showed similar absorption patterns mostly attributed to the phenolic metabolites, i.e., gallic acid derivatives and phenolic acids showing λmax at ca. 240 and 270 nm. Modeling of both UPLC/MS and UV data sets revealed that cv. effect predominated over geographical origin in fruits segregation. Awees (AS) cv. showed the richest phenolic content and in agreement for its recognition as a premium cv. of mango in Egypt. Results of total phenolic content (TPC) assay revealed that AS was the richest in TPC at 179.1 mg GAE/g extract, while Langara from Ismailia (LI) showed the strongest antioxidant effect at 0.41 mg TE/g extract. Partial least square modeling of UV fingerprint with antioxidant action annotated gallates as potential contributor to antioxidant effect though without identification of exact moieties based on UPLC/MS. The study is considered the first-time investigation of Egyptian mango to aid unravel phytoconstituents responsible for fruits benefits using a metabolomics approach.
Publikation
Farag, M. A.; Sharaf El-Din, M. G.; Selim, M. A.; Owis, A. I.; Abouzid, S. F.; Porzel, A.; Wessjohann, L. A.; Otify, A.;Nuclear magnetic resonance metabolomics approach for the analysis of major legume sprouts coupled to chemometricsMolecules26761(2021)DOI: 10.3390/molecules26030761
Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality control purposes. Thirty-two metabolites were identified belonging to different classes, i.e., fatty acids, sugars, amino acids, nucleobases, organic acids, sterols, alkaloids, and isoflavonoids. Quantitative NMR was employed for assessing the major identified metabolite levels and multivariate data analysis was utilized to assess metabolome heterogeneity among sprout samples. Isoflavones were detected exclusively in Cicer sprouts, whereas Trigonella was characterized by 4-hydroxyisoleucine. Vicia sprouts were distinguished from other legume sprouts by the presence of L-Dopa versus acetate abundance in Lens. A common alkaloid in all sprouts was trigonelline, detected at 8–25 µg/mg, suggesting its potential role in legume seeds’ germination. Trigonelline was found at highest levels in Trigonella sprouts. The aromatic NMR region data (δ 11.0–5.0 ppm) provided a better classification power than the full range (δ 11.0–0.0 ppm) as sprout variations mostly originated from secondary metabolites, which can serve as chemotaxonomic markers.
Publikation
Ramadan, N. S.; Wessjohann, L. A.; Mocan, A.; Vodnar, D. C.; El-Sayed, N. H.; El-Toumy, S. A.; Mohamed, D. A.; Aziz, Z. A.; Ehrlich, A.; Farag, M. A.;Nutrient and Sensory Metabolites Profiling of Averrhoa Carambola L. (Starfruit) in the Context of Its Origin and Ripening Stage by GC/MS and Chemometric AnalysisMolecules252423(2020)DOI: 10.3390/molecules25102423
Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38–48%) and glucose (21–25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4–10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7–2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.