Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Vasco, A. V.; Ceballos, L. G.; Wessjohann, L. A.; Rivera, D. G.;Multicomponent functionalization of the octreotide peptide macrocyclic scaffoldEur. J. Org. Chem.2022e202200687(2022)DOI: 10.1002/ejoc.202200687
The replacement of the disulfide bridge by other types of side chain linkages has been a continuous endeavor in the development of cyclic peptide drugs with improved metabolic stability. Octreotide is a potent and selective somatostatin analog that has been used as an anticancer agent, in radiolabeled conjugates for the localization of tumors and as targeting moiety in peptide-drug conjugates. Here, we describe an onresin methodology based on a multicomponent macrocyclization that enables the substitution of the disulfide bond by a tertiary lactam bridge functionalized with a variety of exocyclic moieties, including lipids, fluorophores, and charged groups. Conformational analysis in comparison with octreotide provides key information on the type of functionalization permitting the conformational mimicry of the bioactive peptide.
Publikation
Ditfe, T.; Bette, E.; N. Sultani, H.; Otto, A.; Wessjohann, L. A.; Arnold, N.; Westermann, B.;Synthesis and biological evaluation of highly potent fungicidal deoxy‐hygrophoronesEur. J. Org. Chem.20213827-3836(2021)DOI: 10.1002/ejoc.202100729
Although stripped from hydroxyl-groups, deoxygenated
hygrophorones remain highly active against severe phytopathogens. The
synthesis to these natural product congeners is achieved in
rearrangement sequences, with an optimized deprotection strategy
avoiding retro-aldol reactions. The activities are comparable to
fungicides used in agriculture.
Based on naturally occurring hygrophorones, racemic di-
and mono-hydroxylated cyclopentenones bearing an aliphatic side chain
have been produced in short synthetic sequences starting from furfuryl
aldehyde. For the series of dihydroxylated trans-configured derivatives, an Achmatowicz-rearrangement and a Caddick-ring contraction were employed, and for the series of trans-configured
mono-hydroxylated derivatives a Piancatelli-rearrangement. All final
products showed good to excellent fungicidal activities against the
plant pathogens B. cinerea, S. tritici and P. infestans.
Publikation
Bette, E.; Otto, A.; Dräger, T.; Merzweiler, K.; Arnold, N.; Wessjohann, L.; Westermann, B.;Isolation and Asymmetric Total Synthesis of Fungal Secondary Metabolite Hygrophorone B12Eur. J. Org. Chem.20152357-2365(2015)DOI: 10.1002/ejoc.201403455
Hygrophorone B12, a new antifungal constituent from the fruiting bodies of Hygrophorus abieticola, has been isolated and subsquently synthesized in enantiomerically pure form. The total synthesis includes a Sharpless asymmetric dihydroxylation protocol as the stereodifferentiating step, followed by two diastereoselective aldol‐type reactions. The approach allows the unambiguous control of all three stereogenic centres, and, furthermore, unequivocal determination of the relative and absolute configuration of antibiotic hygrophorones B for the first time.
Publikation
Otto, A.; Laub, A.; Porzel, A.; Schmidt, J.; Wessjohann, L.; Westermann, B.; Arnold, N.;Isolation and Total Synthesis of Albupeptins A-D: 11-Residue Peptaibols from the Fungus Gliocladium albumEur. J. Org. Chem.20157449-7459(2015)DOI: 10.1002/ejoc.201501124
Four new 11‐mer peptaibols, named albupeptins A–D (1–4), were isolated from cultures of the fungus Gliocladium album. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopy, as well as ESI‐HRMSn analysis. The sequence of albupeptin A (1) was thus identified as Ac‐Aib1‐Aib2‐Val3‐Leu4‐Aib5‐Pro6‐Iva7‐Leu8‐Gln9‐Aib10‐Leuol11. Albupeptins B (2) and C (3) feature an exchange of Aib5 by Iva5 and of Aib1 by Iva1, respectively, and albupeptin D (4) contains both Iva1 and Iva5 residues. The stereochemistry of the isolated peptaibols 1–4 was unambiguously assigned by 1H NMR chemical shift analysis in conjunction with solid‐phase peptide synthesis. By using this approach, the absolute configuration of the Iva residues in albupeptins A (1) and C (3) was determined to be D, whereas albupeptins B (2) and D (4) feature an additional Iva5 residue with an L configuration. Thus, albupeptins B (2) and D (4) belong to the rare class of peptaibols that have both stereoisomers of Iva in the same sequence.