Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Sultani, H. N.; Morgan, I.; Hussain, H.; Roos, A. H.; Haeri, H. H.; Kaluđerović, G. N.; Hinderberger, D.; Westermann, B.;Access to new cytotoxic triterpene and steroidal Acid-TEMPO Conjugates by ugi multicomponent-reactionsInt. J. Mol. Sci.227125(2021)DOI: 10.3390/ijms22137125
Multicomponent reactions, especially the Ugi-four component reaction (U-4CR), provide powerful protocols to efficiently access compounds having potent biological and pharmacological effects. Thus, a diverse library of betulinic acid (BA), fusidic acid (FA), cholic acid (CA) conjugates with TEMPO (nitroxide) have been prepared using this approach, which also makes them applicable in electron paramagnetic resonance (EPR) spectroscopy. Moreover, convertible amide modified spin-labelled fusidic acid derivatives were selected for post-Ugi modification utilizing a wide range of reaction conditions which kept the paramagnetic center intact. The nitroxide labelled betulinic acid analogue 6 possesses cytotoxic effects towards two investigated cell lines: prostate cancer PC3 (IC50 7.4 ± 0.7 μM) and colon cancer HT29 (IC50 9.0 ± 0.4 μM). Notably, spin-labelled fusidic acid derivative 8 acts strongly against these two cancer cell lines (PC3: IC50 6.0 ± 1.1 μM; HT29: IC50 7.4 ± 0.6 μM). Additionally, another fusidic acid analogue 9 was also found to be active towards HT29 with IC50 7.0 ± 0.3 μM (CV). Studies on the mode of action revealed that compound 8 increased the level of caspase-3 significantly which clearly indicates induction of apoptosis by activation of the caspase pathway. Furthermore, the exclusive mitochondria targeting of compound 18 was successfully achieved, since mitochondria are the major source of ROS generation.
Publikation
Smolikova, G.; Leonova, T.; Vashurina, N.; Frolov, A.; Medvedev, S.;Desiccation tolerance as the basis of long-term seed viabilityInt. J. Mol. Sci.22101(2021)DOI: 10.3390/ijms22010101
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Publikation
Peters, K.; Balcke, G.; Kleinenkuhnen, N.; Treutler, H.; Neumann, S.;Untargeted in silico compound classification—A novel metabolomics method to assess the chemodiversity in bryophytesInt. J. Mol. Sci.223251(2021)DOI: 10.3390/ijms22063251
In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)–LC/MS–QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou’s diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher’s exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by “zooming in” and in ecology by “zooming out”. The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.
Publikation
Chutia, R.; Scharfenberg, S.; Neumann, S.; Abel, S.; Ziegler, J.;Modulation of phosphate deficiency-induced metabolic changes by iron availability in Arabidopsis thalianaInt. J. Mol. Sci.227609(2021)DOI: 10.3390/ijms22147609
Concurrent suboptimal supply of several nutrients requires the coordination of nutrient-specific transcriptional, phenotypic, and metabolic changes in plants in order to optimize growth and development in most agricultural and natural ecosystems. Phosphate (Pi) and iron (Fe) deficiency induce overlapping but mostly opposing transcriptional and root growth responses in Arabidopsis thaliana. On the metabolite level, Pi deficiency negatively modulates Fe deficiency-induced coumarin accumulation, which is controlled by Fe as well as Pi deficiency response regulators. Here, we report the impact of Fe availability on seedling growth under Pi limiting conditions and on Pi deficiency-induced accumulation of amino acids and organic acids, which play important roles in Pi use efficiency. Fe deficiency in Pi replete conditions hardly changed growth and metabolite profiles in roots and shoots of Arabidopsis thaliana, but partially rescued growth under conditions of Pi starvation and severely modulated Pi deficiency-induced metabolic adjustments. Analysis of T-DNA insertion lines revealed the concerted coordination of metabolic profiles by regulators of Fe (FIT, bHLH104, BRUTUS, PYE) as well as of Pi (SPX1, PHR1, PHL1, bHLH32) starvation responses. The results show the interdependency of Pi and Fe availability and the interplay between Pi and Fe starvation signaling on the generation of plant metabolite profiles.