Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
da Silva, I. C. V.; Silva, I. C. V. d.; de Oliveira, P. F.; Oliveira, P. F. d.; Barbosa, G. M.; Wessjohann, L. A.; Cardozo-Filho, L.; Holandino, C.; Muzitano, M. F.; Leal, I. C. R.;Passiflora mucronata leaves extracts obtained from different methodologies: a phytochemical study based on cytotoxic and apoptosis activities of triterpenes and phytosterols constituentsBraz. J. Pharm. Sci.56e17666(2020)DOI: 10.1590/s2175-97902019000417666
Cancer is one of the most prevalent diseases worldwide and the natural products could be a source of bioactive compounds. Passiflora mucronata (PM) belongs to a very known vegetal genus, although, there are no studies about cytotoxic activity or isolated compounds. Different extracts from PM were obtained by liquid-liquid partition (P), Soxhlet (Sox) and supercritical fluid (SFE1-5) extraction techniques, being compared concerning their yields, chemical profile and cytotoxicity. The Sox extracts showed the highest yields (6.03%: hexane; 2.51%: dichloromethane) followed by SFE (from 4.34 to 1.63%) and partitions (1.06 and 2.26%). The hexane partition (HP) showed the best cytotoxic activity against K562 cell line (IC50 = 18.72 µg.mL-1). From HP, the following compounds were identified and analysed its cytotoxic activities: β-amyrin (IC50 = 3.92 µg.mL-1), β-sitosterol (IC50 = 3.37 µg.mL-1), stigmasterol (IC50 = 3.31 µg.mL-1) and oleanolic acid. Stigmasterol induced about 75% of K562 total apoptosis. The compounds were tested against MA-104 cell line and the selective index (SI) attributed (SI >10 for all compounds). This indicates good selectivity to K562 cell line at the expense of MA-104. This is the first time, identifying those compounds to PM .
Publikation
Mamadalieva, N. Z.; Hussain, H.; Xiao, J.;Recent advances in genus
Mentha
: Phytochemistry, antimicrobial effects, and food applicationsFood Frontiers1435-458(2020)DOI: 10.1002/fft2.53
The genus Mentha (mint) belongs to the Lamiaceae family, which
includes 25 to 30 species. The species of this genus have been known for their medicinal and aromatherapeutic properties since ancient times and possess a significant economical and commercial reputation. Several
species of Mentha are widely used in culinary and traditional medicines in many parts of the world. Essential oils from Mentha
species have been commonly used as flavoring substance in beverages,
providing a “fresh-like” aroma and taste. Chemical analyses of Mentha species have yielded a number of important phytocompounds belonging to different classes, such as organic acids, flavonoids, sterols, alkaloids, lignans, hydrocarbons, fatty acids, tocopherols, proteins, free sugars, etc. Moreover, the main compounds in mints are essential oils, phenolics, and flavonoids. This review reports the available information on the present status (literature up to early 2020) of the Mentha species and summarizes the chemical constituents, traditional and culinary uses, cultivation, and biological properties. In addition, comprehensive analysis of the antibacterial studies conducted on Mentha species is represented. In effect, Mentha species have been presented here as a viable alternative source of many biological and chemically active compounds which are already known to be of great economic, pharmaceutical, and nutritional importance.