Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Farag, M. A.; Wessjohann, L. A.;Metabolome Classification of Commercial Hypericum perforatum (St. John's Wort) Preparations via UPLC-qTOF-MS and ChemometricsPlanta Med.78488-496(2012)DOI: 10.1055/s-0031-1298170
The growing interest in the efficacy of phytomedicines and herbal supplements but also the increase in legal requirements for safety and reliable contents of active principles drive the development of analytical methods for the quality control of complex, multicomponent mixtures as found in plant extracts of value for the pharmaceutical industry. Here, we describe an ultra-performance liquid chromatography method (UPLC) coupled with quadrupole time of flight mass spectrometry (qTOF-MS) measurements for the large scale analysis of H. perforatum plant material and its commercial preparations. Under optimized conditions, we were able to simultaneously quantify and identify 21 metabolites including 4 hyperforins, 3 catechins, 3 naphthodianthrones, 5 flavonoids, 3 fatty acids, and a phenolic acid. Principal component analysis (PCA) was used to ensure good analytical rigorousness and define both similarities and differences among Hypericum samples. A selection of batches from 9 commercially available H. perforatum products available on the German and Egyptian markets showed variable quality, particularly in hyperforins and fatty acid content. PCA analysis was able to discriminate between various preparations according to their global composition, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UPLC-MS-based metabolic fingerprinting to reveal secondary metabolite compositional differences in Hypericum extract.
Publikation
Antolín-Llovera, M.; Ried, M. K.; Binder, A.; Parniske, M.;Receptor Kinase Signaling Pathways in Plant-Microbe InteractionsAnnu. Rev. Phytopathol.50451-473(2012)DOI: 10.1146/annurev-phyto-081211-173002
Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.