Unser 10. Leibniz Plant Biochemistry Symposium am 7. und 8. Mai war ein großer Erfolg. Thematisch ging es in diesem Jahr um neue Methoden und Forschungsansätze der Naturstoffchemie. Die exzellenten Vorträge über Wirkstoffe…
Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Nonhost resistance of Arabidopsis thaliana against Phytophthora infestans, a filamentous eukaryotic microbe and the causal agent of potato late blight, is based on a multilayered defense system. Arabidopsis thaliana controls pathogen entry through the penetration-resistance genes PEN2 and PEN3, encoding an atypical myrosinase and an ABC transporter, respectively, required for synthesis and export of unknown indole compounds. To identify pathogen-elicited leaf surface metabolites and further unravel nonhost resistance in Arabidopsis, we performed untargeted metabolite profiling by incubating a P. infestans zoospore suspension on leaves of WT or pen3 mutant Arabidopsis plants. Among the plant-secreted metabolites, 4-methoxyindol-3-yl-methanol and S-(4-methoxy-indol-3-yl-methyl) cysteine were detected in spore suspensions recollected from WT plants, but at reduced levels from the pen3 mutant plants. In both whole-cell and microsome-based assays, 4-methoxyindol-3-yl-methanol was transported in a PEN3-dependent manner, suggesting that this compound is a PEN3 substrate. The syntheses of both compounds were dependent on functional PEN2 and phytochelatin synthase 1. None of these compounds inhibited mycelial growth of P. infestans in vitro. Of note, exogenous application of 4-methoxyindol-3-yl methanol slightly elevated cytosolic Ca2+ levels and enhanced callose deposition in hydathodes of seedlings treated with a bacterial pathogen-associated molecular pattern (PAMP), flagellin (flg22). Loss of flg22-induced callose deposition in leaves of pen3 seedlings was partially reverted by the addition of 4-methoxyindol-3-yl methanol. In conclusion, we have identified a specific indole compound that is a substrate for PEN3 and contributes to the plant defense response against microbial pathogens.
Publikation
Göbel, C.; Feussner, I.; Rosahl, S.;Lipid Peroxidation during the Hypersensitive Response in Potato in the Absence of 9-LipoxygenasesJ. Biol. Chem.27852834-52840(2003)DOI: 10.1074/jbc.M310833200
Hypersensitive cell death is an important defense reaction of plants to pathogen infection and is accompanied by lipid peroxidation processes. These may occur non-enzymatically by the action of reactive oxygen species or may be catalyzed by enzymes such as α-dioxygenases, lipoxygenases, or peroxidases. Correlative data showing increases in 9-lipoxygenase products in hyper-sensitively reacting cells have so far suggested that a large part of lipid peroxidation is mediated by a specific set of 9-lipoxygenases. To address the significance of 9-lipoxygenases for this type of pathogen response in potato, RNA interference constructs of a specific pathogen-induced potato 9-lipoxygenase were transferred to potato plants. Significantly reduced 9-lipoxygenase transcript levels were observed in transgenic plants after pathogen treatment. In addition, 9-lipoxygenase activity was hardly detectable, and levels of 9-lipoxygenase-derived oxylipins were reduced up to 12-fold after pathogen infection. In contrast to wild type plants, high levels of non-enzymatically as well as 13-lipoxygenase-derived oxylipins were present in 9-lipoxygenase-deficient plants. From this we conclude that during the normal hypersensitive response in potato, lipid peroxidation may occur as a controlled and directed process that is facilitated by the action of a specific 9-lipoxygenase. If 9-lipoxygenase-mediated formation of hydroperoxides is repressed, autoxidative lipid peroxidation processes and 13-lipoxygenase-mediated oxylipins synthesis become prominent. The unaltered timing and extent of necrosis formation suggests that the origin of lipid hydroperoxides does not influence pathogen-induced cell death in potato.
Publikation
Petters, J.; Göbel, C.; Scheel, D.; Rosahl, S.;A Pathogen-Responsive cDNA from Potato Encodes a Protein with Homology to a Phosphate Starvation-Induced PhosphatasePlant Cell Physiol.431049-1053(2002)DOI: 10.1093/pcp/pcf117
Infiltration of potato leaves with the phytopathogenic bacteria Pseudomonas syringae pv. maculicola induces local and systemic defense gene expression as well as increased resistance against subsequent pathogen attacks. By cDNA-AFLP a gene was identified that is activated locally in potato leaves in response to bacterial infiltration and after infection with Phytophthora infestans, the causal agent of late blight disease. The encoded protein has high homology to a phosphate starvation-induced acid phosphatase from tomato. Possibly, decreased phosphate availability after pathogen infection acts as a signal for the activation of the potato phosphatase gene.
Publikation
Göbel, C.; Feussner, I.; Schmidt, A.; Scheel, D.; Sanchez-Serrano, J.; Hamberg, M.; Rosahl, S.;Oxylipin Profiling Reveals the Preferential Stimulation of the 9-Lipoxygenase Pathway in Elicitor-treated Potato CellsJ. Biol. Chem.2766267-6273(2001)DOI: 10.1074/jbc.M008606200
Lipoxygenases are key enzymes in the synthesis of oxylipins and play an important role in the response of plants to wounding and pathogen attack. In cultured potato cells treated with elicitor from Phytophthora infestans, the causal agent of late blight disease, transcripts encoding a linoleate 9-lipoxygenase and a linoleate 13-lipoxygenase accumulate. However, lipoxygenase activity assays and oxylipin profiling revealed only increased 9-lipoxygenase activity and formation of products derived therefrom, such as 9-hydroxy octadecadienoic acid and colneleic acid. Furthermore, the 9-lipoxygenase products 9(S),10(S),11(R)-trihydroxy-12(Z)-octadecenoic and 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid were identified as novel, elicitor-inducible oxylipins in potato, suggesting a role of these compounds in the defense response against pathogen attack. Neither 13-lipoxygenase activity nor 13-lipoxygenase products were detected in higher amounts in potato cells after elicitation. Thus, formation of products by the 9-lipoxygenase pathway, including the enzymes hydroperoxide reductase, divinyl ether synthase, and epoxy alcohol synthase, is preferentially stimulated in cultured potato cells in response to treatment with P. infestanselicitor. Moreover, elicitor-induced accumulation of desaturase transcripts and increased phospholipase A2 activity after elicitor treatment suggest that substrates for the lipoxygenase pathway might be provided by de novo synthesis and subsequent release from lipids of the endomembrane system.