Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Toxic proteins are prime targets for molecular farming and efficient tools for targeted cell ablation in genetics, developmental biology, and biotechnology. Achieving conditional activity of cytotoxins and their maintenance in form of stably transformed transgenes is challenging. We demonstrate here a switchable version of the highly cytotoxic bacterial ribonuclease barnase by using efficient temperature-dependent control of protein accumulation in living multicellular organisms. By tuning the levels of the protein, we were able to control the fate of a plant organ in vivo. The on-demand-formation of specialized epidermal cells (trichomes) through manipulating stabilization versus destabilization of barnase is a proof-of-concept for a robust and powerful tool for conditional switchable cell arrest. We present this tool both as a potential novel strategy for the manufacture and accumulation of cytotoxic proteins and toxic high-value products in plants or for conditional genetic cell ablation.
Publikation
Mot, A. C.; Prell, E.; Klecker, M.; Naumann, C.; Faden, F.; Westermann, B.; Dissmeyer, N.;Real-time detection of N-end rule-mediated ubiquitination via fluorescently labeled substrate probesNew Phytol.217613-624(2018)DOI: 10.1111/nph.14497
The N‐end rule pathway has emerged as a major system for regulating protein functions by controlling their turnover in medical, animal and plant sciences as well as agriculture. Although novel functions and enzymes of the pathway have been discovered, the ubiquitination mechanism and substrate specificity of N‐end rule pathway E3 ubiquitin ligases have remained elusive. Taking the first discovered bona fide plant N‐end rule E3 ligase PROTEOLYSIS1 (PRT1) as a model, we used a novel tool to molecularly characterize polyubiquitination live, in real time.We gained mechanistic insights into PRT1 substrate preference and activation by monitoring live ubiquitination using a fluorescent chemical probe coupled to artificial substrate reporters. Ubiquitination was measured by rapid in‐gel fluorescence scanning as well as in real time by fluorescence polarization.The enzymatic activity, substrate specificity, mechanisms and reaction optimization of PRT1‐mediated ubiquitination were investigated ad hoc instantaneously and with significantly reduced reagent consumption.We demonstrated that PRT1 is indeed an E3 ligase, which has been hypothesized for over two decades. These results demonstrate that PRT1 has the potential to be involved in polyubiquitination of various substrates and therefore pave the way to understanding recently discovered phenotypes of prt1 mutants.