Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1 (COI1)-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected years ago in wounded leaves of flowering plants, opening up the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp accumulating in response to biotic and abiotic stress in Arabidopsis (Arabidopsis thaliana). The OPDA-amino acid conjugates displayed cis-OPDA-related plant responses in a JA-Ile-dependent manner. We also showed that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are mediated by members of the amidosynthetase GRETCHEN HAGEN 3 (GH3) and the amidohydrolase INDOLE-3-ACETYL-LEUCINE RESISTANT 1 (ILR1)/ILR1-like (ILL) families. Thus, OPDA amino acid conjugates function in the catabolism or temporary storage of cis-OPDA in stress responses instead of acting as chemical signals per se.
Publikation
Nguyen, L. T.; Moutesidi, P.; Ziegler, J.; Glasneck, A.; Khosravi, S.; Abel, S.; Hensel, G.; Krupinska, K.; Humbeck, K.;WHIRLY1 regulates aliphatic glucosinolate biosynthesis in early seedling development of ArabidopsisPlant J.121e17181(2025)DOI: 10.1111/tpj.17181
SUMMARYWHIRLY1 belongs to a family of plant‐specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9‐mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss‐of‐function of WHIRLY1 in 5‐day‐old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild‐type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed‐to‐seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine‐derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.
Publikation
Bogino, M. F.; Lapegna Senz, J. M.; Kourdova, L. T.; Tamagnone, N.; Romanowski, A.; Wirthmueller, L.; Fabro, G.;Downy mildew effector HaRxL106 interacts with the transcription factor BIM1 altering plant growth, BR signaling and susceptibility to pathogensPlant J.121e17159(2025)DOI: 10.1111/tpj.17159
Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen that causes downy mildew disease on Arabidopsis. This obligate biotroph manipulates the homeostasis of its host plant by secreting numerous effector proteins, among which are the RxLR effectors. Identifying the host targets of effectors and understanding how their manipulation facilitates colonization of plants are key to improve plant resistance to pathogens. Here we characterize the interaction between the RxLR effector HaRxL106 and BIM1, an Arabidopsis transcription factor (TF) involved in Brassinosteroid (BR) signaling. We report that HaRxL106 interacts with BIM1 in vitro and in planta. BIM1 is required by the effector to increase the host plant susceptibility to (hemi)biotrophic pathogens, and thus can be regarded as a susceptibility factor. Mechanistically, HaRxL106 requires BIM1 to induce the transcriptional activation of BR‐responsive genes and cause alterations in plant growth patterns that phenocopy the shade avoidance syndrome. Our results support previous observations of antagonistic interactions between activation of BR signaling and suppression of plant immune responses and reveal that BIM1, a new player in this crosstalk, is manipulated by the pathogenic effector HaRxL106.
Publikation
Gasperini, D.; Howe, G. A.;Phytohormones in a universe of regulatory metabolites: lessons from jasmonatePlant Physiol.195135-154(2024)DOI: 10.1093/plphys/kiae045
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite–protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.