Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Chalo, D. M.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Franke, K.; Yenesew, A.; Wessjohann, L. A.;Chemical constituents of the roots of Ormocarpum sennoides subsp. zanzibaricumBiochem. Syst. Ecol.93104142(2020)DOI: 10.1016/j.bse.2020.104142
Phytochemical investigation of the roots of O. sennoides subsp. zanzibaricum Brenan & J.B. Gillett resulted in the isolation of three biflavonoids (trime-chamaejasmin, (+)- chamaejasmin, (+)-liquiritigeninyl-(I-3,II-3)-naringenin), one bi-4-phenyldihydrocoumarin (diphysin), one isoflavan (glabridin), one triterpenoid (3-O-acetyloleanoic acid) and a phytosterol (β-sitosterol). Compounds were identified by detailed MS, 1D and 2D NMR spectroscopic analyses. Their absolute configurations were elucidated based on ECD spectra. The previously undescribed trime-chamaejasmin represents a bis-epi-chamaejasmenin C diastereomer. The chemophenetic significance is discussed in detail. The results contribute to the phytochemical characterization of the genus Ormocarpum and suggest a close chemophenetic relationship with other genera within the subfamily Papilionoideae. Furthermore, this report provides baseline data for comparing the two infraspecific taxa of O. sennoides (Willd.) DC.
Publikation
Grunewald, S.; Marillonnet, S.; Hause, G.; Haferkamp, I.; Neuhaus, H. E.; Veß, A.; Hollemann, T.; Vogt, T.;The Tapetal Major Facilitator NPF2.8 is Required for Accumulation of Flavonol Glycosides on the Pollen Surface in Arabidopsis thalianaPlant Cell321727-1748(2020)DOI: 10.1105/tpc.19.00801
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear, how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that AtNPF2.8, a member of the nitrate/peptide NTR/PTR family of transporters is required for accumulation and transport of pollen-specific flavonol 3-O-sophorosides, characterized by a glycosidic β-1,2-linkage, to the pollen surface of Arabidopsis. Ectopic, transient expression of this flavonol sophoroside transporter, termed AtFST1, fused to green fluorescent protein (GFP) demonstrated localization of AtFST1 at the plasmalemma in epidermal leaf cells of Nicotiana benthamiana whereas the tapetum-specific AtFST1-expression was confirmed by promAtFST1:GFP-reporter lines. In vitro characterization of AtFST1-activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1-line by complementation with a genomic fragment of the AtFST1 gene restored flavonol glycoside accumulation of pollen grains to wild-type levels corroborating the requirement of AtFST1 for transport of flavonol-3-O-sophorosides from the tapetum to the pollen surface.
Publikation
Durian, G.; Sedaghatmehr, M.; Matallana-Ramirez, L. P.; Schilling, S. M.; Schaepe, S.; Guerra, T.; Herde, M.; Witte, C.-P.; Mueller-Roeber, B.; Schulze, W. X.; Balazadeh, S.; Romeis, T.;Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1Plant Cell321610-1625(2020)DOI: 10.1105/tpc.19.00810
Calcium-regulated protein kinases are key components of are key components of intracellular signaling in plants that mediate rapid stress-induced responses to changes in the environment. To identify in vivo phosphorylation substrates of CALCIUM-DEPENDENT PROTEIN KINASE1 (CPK1), we analyzed the conditional expression of constitutively active CPK1 in conjunction with in vivo phosphoproteomics. We identified Arabidopsis thaliana ORESARA1 (ORE1), the developmental master regulator of senescence, as a direct CPK1 phosphorylation substrate. CPK1 phosphorylates ORE1 at a hotspot within an intrinsically disordered region. This augments transcriptional activation by ORE1 of its downstream target gene BIFUNCTIONAL NUCLEASE1 (BFN1). Plants that overexpress ORE1, but not an ORE1 variant lacking the CPK1 phosphorylation hotspot, promote early senescence. Furthermore, ORE1 is required for enhanced cell death induced by CPK1 signaling. Our data validate the use of conditional expression of an active enzyme combined with phosphoproteomics to decipher specific kinase target proteins of low abundance, of transient phosphorylation, or in yet undescribed biological contexts. Here, we have identified that senescence is not just under molecular surveillance manifested by stringent gene regulatory control over ORE1. In addition, the decision to die is superimposed by an additional layer of control towards ORE1 via its post-translational modification linked to the calcium-regulatory network through CPK1.
Publikation
Tchatchouang Noulala, C. G.; Fotso, G. W.; Rennert, R.; Lenta, B. N.; Sewald, N.; Arnold, N.; Happi, E. N.; Ngadjui, B. T.;Mesomeric form of quaternary indoloquinazoline alkaloid and other constituents from the Cameroonian Rutaceae Araliopsis soyauxii Engl.Biochem. Syst. Ecol.91104050(2020)DOI: 10.1016/j.bse.2020.104050
A mesomeric form of quaternary indoloquinazoline alkaloid, soyauxinium chloride (1) was obtained through the chemical investigation of stem bark and roots of Araliopsis soyauxii Engl. [syn. Vepris soyauxii (Engl.) Mziray] (Rutaceae) together with fifteen known compounds, including three furoquinoline alkaloids, three 2-quinolones, two limonoids, two triterpenes, two steroids, a coumarin, an acridone alkaloid, and a flavonoid glycoside. Their structures were established by comprehensive spectroscopic and spectrometric analyses (1D and 2D NMR, ESI-HR-MS) and by comparison with previously reported data. 13C NMR data of araliopsinine are also reported here for the first time. The isolated compounds were screened in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. However, none of the tested compounds exhibited strong anti-proliferative or cytotoxic activities, to either prostate PC-3 cells or colon HT-29 cells. At 100 μM, the furoquinoline maculine showed a slightly increased anti-proliferative effect, however, exclusively on HT-29 cells. The chemotaxonomic significance of the isolated compounds has also been discussed.