Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Chalo, D. M.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Franke, K.; Yenesew, A.; Wessjohann, L. A.;Chemical constituents of the roots of Ormocarpum sennoides subsp. zanzibaricumBiochem. Syst. Ecol.93104142(2020)DOI: 10.1016/j.bse.2020.104142
Phytochemical investigation of the roots of O. sennoides subsp. zanzibaricum Brenan & J.B. Gillett resulted in the isolation of three biflavonoids (trime-chamaejasmin, (+)- chamaejasmin, (+)-liquiritigeninyl-(I-3,II-3)-naringenin), one bi-4-phenyldihydrocoumarin (diphysin), one isoflavan (glabridin), one triterpenoid (3-O-acetyloleanoic acid) and a phytosterol (β-sitosterol). Compounds were identified by detailed MS, 1D and 2D NMR spectroscopic analyses. Their absolute configurations were elucidated based on ECD spectra. The previously undescribed trime-chamaejasmin represents a bis-epi-chamaejasmenin C diastereomer. The chemophenetic significance is discussed in detail. The results contribute to the phytochemical characterization of the genus Ormocarpum and suggest a close chemophenetic relationship with other genera within the subfamily Papilionoideae. Furthermore, this report provides baseline data for comparing the two infraspecific taxa of O. sennoides (Willd.) DC.
Publikation
Tchatchouang Noulala, C. G.; Fotso, G. W.; Rennert, R.; Lenta, B. N.; Sewald, N.; Arnold, N.; Happi, E. N.; Ngadjui, B. T.;Mesomeric form of quaternary indoloquinazoline alkaloid and other constituents from the Cameroonian Rutaceae Araliopsis soyauxii Engl.Biochem. Syst. Ecol.91104050(2020)DOI: 10.1016/j.bse.2020.104050
A mesomeric form of quaternary indoloquinazoline alkaloid, soyauxinium chloride (1) was obtained through the chemical investigation of stem bark and roots of Araliopsis soyauxii Engl. [syn. Vepris soyauxii (Engl.) Mziray] (Rutaceae) together with fifteen known compounds, including three furoquinoline alkaloids, three 2-quinolones, two limonoids, two triterpenes, two steroids, a coumarin, an acridone alkaloid, and a flavonoid glycoside. Their structures were established by comprehensive spectroscopic and spectrometric analyses (1D and 2D NMR, ESI-HR-MS) and by comparison with previously reported data. 13C NMR data of araliopsinine are also reported here for the first time. The isolated compounds were screened in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. However, none of the tested compounds exhibited strong anti-proliferative or cytotoxic activities, to either prostate PC-3 cells or colon HT-29 cells. At 100 μM, the furoquinoline maculine showed a slightly increased anti-proliferative effect, however, exclusively on HT-29 cells. The chemotaxonomic significance of the isolated compounds has also been discussed.
Publikation
Hussain, H.; Ziegler, J.; Mrestani, Y.; Neubert, R. H. H.;Studies of the Corneocytary Pathway Across the Stratum Corneum. Part I: Diffusion of Amino Acids Into the Isolated CorneocytesPharmazie74340-344(2019)DOI: 10.1691/ph.2019.8098
Amino acids (AAs), important constituents of natural moisturizing factors (NMFs) of the skin are decreased in diseased conditions such as psoriasis and atopic dermatitis. No study so far investigated the uptake of AAs into isolated corneocytes (COR). The present study was performed using 19 AAs, including taurine (TAU), to measure their amount diffused into the COR and binding of these AAs to keratin. Incubation of alanine, aspartic acid, asparagine, glutamine, glutamic acid, histidine, proline, serine and TAU with the isolated COR showed uptake after 24 h of 51.6, 95.4, 98.6, 94.1, 95.6, 90.1, 94.6, 72.9 and 57.8 %, respectively, into the COR but no binding with keratin. Uptake of TAU was validated by time dependent in-vitro diffusion models 'without COR and 'with COR'. The time dependent curve fitting showed that in in-vitro diffusion model 'without COR' there was no change in the total concentration of TAU until 72 hours, while in diffusion model 'with COR' the total conc. decreased to 37.8 % after 72 hours. The Pearson's correlation coefficient 'r' between the conc. curves of both in-vitro diffusion models was -0.54 that was an evidence of significant amount of TAU uptake by the COR. AAs as part of the NMFs have a great potential to be diffused into the COR. This property of the AAs can be employed in further dermatological research on diseased or aged skin conditions with NMFs deficiency.
Publikation
Fobofou, S. A. T.; Ares, K.; Arnold, N.; Imming, P.;New source report: Chemical constituents of Hypericum quartinianum (Hypericaceae), a sub-Saharan African plant speciesBiochem. Syst. Ecol.8546-49(2019)DOI: 10.1016/j.bse.2019.05.006