Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Hornstedtia scyphifera (J.Koenig) Steud. represents a lesser-known member of the ginger family (Zingiberaceae) that is used in Malaysia as spice and traditional medicine. The phytochemical investigation of leaves from this species utilizing diverse analytical methods has provided comprehensive insights into its chemical profile for the first time. Headspace gas chromatography-mass spectrometry (HS-GCMS) and GCMS analyses of essential oil and nonpolar extracts verified α-pinene, camphene, p-cymene, and camphor as main volatile compounds. Metabolite profiling of the crude extract by ultra-high-performance-liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) unveiled terpenoids, flavonoids and other phenolics as major compound classes. Isolation and follow-up structure elucidation, involving 1D and 2D NMR, HRMS, UV and CD analysis, yielded two new sesquiterpenoids, (1R,5S,6S,7R,10R)-mustak-14-oic acid (1) and (1R,6S,7S,10R)-6-hydroxy-anhuienosol (2), along with 24 known compounds (seven terpenoids, seven flavonoids, ten phenolics), 21 of these never reported for H. scyphifera. Additionally, the crude extract and fractions from the purification process were screened for antibacterial and antifungal activity. This is supplemented by an extensive literature research for described bioactivities of all isolated compounds. Our results support and explain previously detected antimicrobial, antifungal and neuroprotective effects of H. scyphifera extracts and provide evidence for its potential pharmacological importance.
Publikation
Thirulogachandar, V.; Govind, G.; Hensel, G.; Kale, S. M.; Kuhlmann, M.; Eschen-Lippold, L.; Rutten, T.; Koppolu, R.; Rajaraman, J.; Palakolanu, S. R.; Seiler, C.; Sakuma, S.; Jayakodi, M.; Lee, J.; Kumlehn, J.; Komatsuda, T.; Schnurbusch, T.; Sreenivasulu, N.;HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet developmentJ. Exp. Bot.752900–2916(2024)DOI: 10.1093/jxb/erae044
The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Publikation
Meena, S.; Wagner, C.; Caggegi, L.; Baumann-Kaschig, K.; Ried, M. K.;A user-friendly protocol for the cultivation and successful crossing of Lotus japonicusBio Protoc.(2021)DOI: 10.21769/p1464
This is a detailed and user-friendly protocol for the cultivation and successful crossing of Lotus japonicus (L. japonicus) e.g. for the generation of higher order mutants, based on methods previously reported (Grant et al., 1962; Handberg and Stougaards, 1992; Jiang and Gresshoff, 1997; Pajuelo and Stougaard, 2005).
Publikation
Brillada, C.; Teh, O.-K.; Ditengou, F. A.; Lee, C.-W.; Klecker, T.; Saeed, B.; Furlan, G.; Zietz, M.; Hause, G.; Eschen-Lippold, L.; Hoehenwarter, W.; Lee, J.; Ott, T.; Trujillo, M.;Exocyst subunit Exo70B2 is linked to immune signaling and autophagyPlant Cell33404-419(2021)DOI: 10.1093/plcell/koaa022
During the immune response, activation of the secretory pathway is key to mounting an effective response, while gauging its output is important to maintain cellular homeostasis. The Exo70 subunit of the exocyst functions as a spatiotemporal regulator by mediating numerous interactions with proteins and lipids. However, a molecular understanding of the exocyst regulation remains challenging. We show that, in Arabidopsis thaliana, Exo70B2 behaves as a bona fide exocyst subunit. Conversely, treatment with the salicylic acid (SA) defence hormone analog benzothiadiazole (BTH), or the immunogenic peptide flg22, induced Exo70B2 transport into the vacuole. We reveal that Exo70B2 interacts with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) via two ATG8-interacting motives (AIMs) and its transport into the vacuole is dependent on autophagy. In line with its role in immunity, we discovered that Exo70B2 interacted with and was phosphorylated by the kinase MPK3. Mimicking phosphorylation had a dual impact on Exo70B2: first, by inhibiting localization at sites of active secretion, and second, it increased the interaction with ATG8. Phosphonull variants displayed higher effector-triggered immunity (ETI) and were hypersensitive to BTH, which induce secretion and autophagy. Our results suggest a molecular mechanism by which phosphorylation diverts Exo70B2 from the secretory into the autophagy pathway for its degradation, to dampen secretory activity.