Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). We combined metabolomics and machine learning to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate cancer cells (PC-3). As proof of concept, we studied 38 drugs with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. We validate the transferability of MoA predictions from PC-3 to two other cancer cell models and show that correct predictions are still possible, but at the expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, we predict that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as supported by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, our approach offers new opportunities, including the optimization of combinatorial drug applications.
Publikation
Guo, J.; Van De Ven, W. T.; Skirycz, A.; Thirumalaikumar, V. P.; Zeng, L.; Zhang, Q.; Balcke, G. U.; Tissier, A.; Dehesh, K.;An evolutionarily conserved metabolite inhibits biofilm formation in Escherichia coli K-12Nat. Commun.1510079(2024)DOI: 10.1038/s41467-024-54501-w
Methylerythritol cyclodiphosphate (MEcPP) is an intermediate in the biosynthesis of isoprenoids in plant plastids and in bacteria, and acts as a stress signal in plants. Here, we show that MEcPP regulates biofilm formation in Escherichia coli K-12 MG1655. Increased MEcPP levels, triggered by genetic manipulation or oxidative stress, inhibit biofilm development and production of fimbriae. Deletion of fimE, encoding a protein known to downregulate production of adhesive fimbriae, restores biofilm formation in cells with elevated MEcPP levels. Limited proteolysis-coupled mass spectrometry (LiP-MS) reveals that MEcPP interacts with the global regulatory protein H-NS, which is known to repress transcription of fimE. MEcPP prevents the binding of H-NS to the fimE promoter. Therefore, our results indicate that MEcPP can regulate biofilm formation by modulating H-NS activity and thus reducing fimbriae production. Further research is needed to test whether MEcPP plays similar regulatory roles in other bacteria.
Publikation
Frey, M.; Vahabi, K.; Cankar, K.; Lackus, N. D.; Padilla-Gonzalez, F.; Ro, D.-K.; Rieseberg, L.; Spring, O.; Tissier, A.;Sesquiterpene lactones – insights into biosynthesis, regulation and signalling rolesCrit. Rev. Plant Sci.43131-157(2024)DOI: 10.1080/07352689.2024.2307240
Sesquiterpene lactones (STLs) are bitter tasting plant specialized metabolites derived from farnesyl pyrophosphate (FPP) that contain a characteristic lactone ring. STLs can be found in many plant families that are distantly related to each other and outside the plant kingdom. They are especially prevalent in the plant families Apiaceae and Asteraceae, the latter being one of the largest plant families besides the Orchidaceae. The STL diversity is especially large in the Asteraceae, which made them an ideal object for chemosystematic studies in these species. Many STLs show a high bioactivity, for example as protective compounds against herbivory. STLs are also relevant for pharmaceutical applications, such as the treatment of malaria with artemisinin. Recent findings have dramatically changed our knowledge about the biosynthesis of STLs, as well as their developmental, spatial, and environmental regulation. This review intents to update the currently achieved progress in these aspects. With the advancement of genome editing tools such as CRISPR/Cas and the rapid acceleration of the speed of genome sequencing, even deeper insights into the biosynthesis, regulation, and enzyme evolution of STL can be expected in the future. Apart from their role as protective compounds, there may be a more subtle role of STL in regulatory processes of plants that will be discussed as well.
Publikation
Frey, M.; Bathe, U.; Meink, L.; Balcke, G. U.; Schmidt, J.; Frolov, A.; Soboleva, A.; Hassanin, A.; Davari, M. D.; Frank, O.; Schlagbauer, V.; Dawid, C.; Tissier, A.;Combinatorial biosynthesis in yeast leads to over 200 diterpenoidsMetab. Eng.82193-200(2024)DOI: 10.1016/j.ymben.2024.02.006
Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyldiphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.