Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Herrera-Rocha, F.; Cala, M. P.; León-Inga, A. M.; Aguirre Mejía, J. L.; Rodríguez-López, C. M.; Florez, S. L.; Chica, M. J.; Olarte, H. H.; Duitama, J.; González Barrios, A. F.; Fernández-Niño, M.;Lipidomic profiling of bioactive lipids during spontaneous fermentations of fine-flavor cocoaFood Chem.397133845(2022)DOI: 10.1016/j.foodchem.2022.133845
The impact of cocoa lipid content on chocolate quality has been extensively described. Nevertheless, few studies have elucidated the cocoa lipid composition and their bioactive properties, focusing only on specific lipids. In the present study the lipidome of fine-flavor cocoa fermentation was analyzed using LC-MS-QTOF and a Machine Learning model to assess potential bioactivity was developed. Our results revealed that the cocoa lipidome, comprised mainly of fatty acyls and glycerophospholipids, remains stable during fine-flavor cocoa fermentations. Also, several Machine Learning algorithms were trained to explore potential biological activity among the identified lipids. We found that K-Nearest Neighbors had the best performance. This model was used to classify the identified lipids as bioactive or non-bioactive, nominating 28 molecules as potential bioactive lipids. None of these compounds have been previously reported as bioactive. Our work is the first untargeted lipidomic study and systematic effort to investigate potential bioactivity in fine-flavor cocoa lipids.