Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B.;Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradicesPlant Physiol.1391401-1410(2005)DOI: 10.1104/pp.105.069054
During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
Publikation
Yu, C. K. Y.; Springob, K.; Schmidt, J.; Nicholson, R. L.; Chu, I. K.; Yip, W. K.; Lo, C.;A Stilbene Synthase Gene (SbSTS1) Is Involved in Host and Nonhost Defense Responses in SorghumPlant Physiol.138393-401(2005)DOI: 10.1104/pp.105.059337
A chalcone synthase (CHS)-like gene, SbCHS8, with high expressed sequence tag abundance in a pathogen-induced cDNA library, was identified previously in sorghum (Sorghum bicolor). Genomic Southern analysis revealed that SbCHS8 represents a single-copy gene. SbCHS8 expression was induced in sorghum mesocotyls following inoculation with Cochliobolus heterotrophus and Colletotrichum sublineolum, corresponding to nonhost and host defense responses, respectively. However, the induction was delayed by approximately 24 h when compared to the expression of at least one of the other SbCHS genes. In addition, SbCHS8 expression was not induced by light and did not occur in a tissue-specific manner. SbCHS8, together with SbCHS2, was overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) tt4 (transparent testa) mutants defective in CHS activities. SbCHS2 rescued the ability of these mutants to accumulate flavonoids in seed coats and seedlings. In contrast, SbCHS8 failed to complement the mutation, suggesting that the encoded enzyme does not function as a CHS. To elucidate their biochemical functions, recombinant proteins were assayed with different phenylpropanoid-Coenzyme A esters. Flavanones and stilbenes were detected in the reaction products of SbCHS2 and SbCHS8, respectively. Taken together, our data demonstrated that SbCHS2 encodes a typical CHS that synthesizes naringenin chalcone, which is necessary for the formation of different flavonoid metabolites. On the other hand, SbCHS8, now retermed SbSTS1, encodes an enzyme with stilbene synthase activity, suggesting that sorghum accumulates stilbene-derived defense metabolites in addition to the well-characterized 3-deoxyanthocyanidin phytoalexins.
Publikation
Prost, I.; Dhondt, S.; Rothe, G.; Vicente, J.; Rodriguez, M. J.; Kift, N.; Carbonne, F.; Griffiths, G.; Esquerré-Tugayé, M.-T.; Rosahl, S.; Castresana, C.; Hamberg, M.; Fournier, J.;Evaluation of the Antimicrobial Activities of Plant Oxylipins Supports Their Involvement in Defense against PathogensPlant Physiol.1391902-1913(2005)DOI: 10.1104/pp.105.066274
Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity, such as 13-keto-9(Z),11(E),15(Z)-octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly, this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms.
Publikation
Overmyer, K.; Brosché, M.; Pellinen, R.; Kuittinen, T.; Tuominen, H.; Ahlfors, R.; Keinänen, M.; Saarma, M.; Scheel, D.; Kangasjärvi, J.;Ozone-Induced Programmed Cell Death in the Arabidopsis radical-induced cell death1 MutantPlant Physiol.1371092-1104(2005)DOI: 10.1104/pp.104.055681
Short, high-concentration peaks of the atmospheric pollutant ozone (O3) cause the formation of cell death lesions on the leaves of sensitive plants. Numerous similarities between the plant responses to O3 and pathogens suggest that O3 triggers hypersensitive response-like programmed cell death (PCD). We examined O3 and superoxide-induced cell death in the O3-sensitive radical-induced cell death1 (rcd1) mutant. Dying cells in O3-exposed rcd1 exhibited several of the typical morphological characteristics of the hypersensitive response and PCD. Double-mutant analyses indicated a requirement for salicylic acid and the function of the cyclic nucleotide-gated ion channel AtCNGC2 in cell death. Furthermore, a requirement for ATPases, kinases, transcription, Ca2+ flux, caspase-like proteolytic activity, and also one or more phenylmethylsulfonyl fluoride-sensitive protease activities was shown for the development of cell death lesions in rcd1. Furthermore, mitogen-activated protein kinases showed differential activation patterns in rcd1 and Columbia. Taken together, these results directly demonstrate the induction of PCD by O3.