Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Herrera-Rocha, F.; León-Inga, A. M.; Aguirre Mejía, J. L.; Rodríguez-López, C. M.; Chica, M. J.; Wessjohann, L. A.; González Barrios, A. F.; Cala, M. P.; Fernández-Niño, M.;Bioactive and flavor compounds in cocoa liquor and their traceability over the major steps of cocoa post-harvesting processesFood Chem.435137529(2024)DOI: 10.1016/j.foodchem.2023.137529
The production of fine-flavor cocoa represents a promising avenue to enhance socioeconomic development in Colombia and Latin America. Premium chocolate is obtained through a post-harvesting process, which relies on semi-standardized techniques. The change in the metabolic profile during cocoa processing considerably impacts flavor and nutraceutical properties of the final product. Understanding this impact considering both volatiles and non-volatile compounds is crucial for process and product re-engineering of cocoa post-harvesting. Consequently, this work studied the metabolic composition of cocoa liquor by untargeted metabolomics and lipidomics. This approach offered a comprehensive view of cocoa biochemistry, considering compounds associated with bioactivity and flavor in cocoa liquor. Their variations were traced back over the cocoa processing (i.e., drying, and roasting), highlighting their impact on flavor development and the nutraceutical properties. These results represent the basis for future studies aimed to re-engineer cocoa post-harvesting considering the variation of key flavor and bioactive compounds over processing.
Publikation
Eldehna, W. M.; Fares, M.; Bonardi, A.; Avgenikos, M.; Baselious, F.; Schmidt, M.; Al-Warhi, T.; Abdel-Aziz, H. A.; Rennert, R.; Peat, T. S.; Supuran, C. T.; Wessjohann, L. A.; Ibrahim, H. S.;4-(Pyrazolyl)benzenesulfonamide Ureas as Carbonic Anhydrases Inhibitors and Hypoxia-Mediated Chemo-Sensitizing Agents in Colorectal Cancer CellsJ. Med. Chem.6720438-20454(2024)DOI: 10.1021/acs.jmedchem.4c01894
Hypoxia in tumors contributes to chemotherapy resistance, worsened by acidosis driven by carbonic anhydrases (hCA IX and XII). Targeting these enzymes can mitigate acidosis, thus enhancing tumor sensitivity to cytotoxic drugs. Herein, novel 4-(pyrazolyl)benzenesulfonamide ureas (SH7a−t) were developed and evaluated for their inhibitory activity against hCA IX and XII. They showed promising results (hCA IX: KI =15.9−67.6 nM, hCA XII: KI = 16.7−65.7 nM). Particularly, SH7s demonstrated outstanding activity (KIs = 15.9 nM for hCA IX and 55.2 nM for hCA XII) and minimal off-target kinase inhibition over a panel of 258 kinases. In NCI anticancer screening, SH7s exhibited broad-spectrum activity with an effective growth inhibition full panel GI50 (MG-MID) value of 3.5 μM and a subpanel GI50 (MG-MID) range of 2.4−6.3 μM. Furthermore, SH7s enhanced the efficacy of Taxol and 5-fluorouracil in cotreatment regimens under hypoxic conditions in HCT-116 colorectal cancer cells, indicating its potential as a promising anticancer agent.
Publikation
Baky, M. H.; Kamal, I. M.; Wessjohann, L. A.; Farag, M. A.;Assessment of metabolome diversity in black and white pepper in response to autoclaving using MS- and NMR-based metabolomics and in relation to its remote and direct antimicrobial effects against food-borne pathogensRSC Adv.1410799-10813(2024)DOI: 10.1039/d4ra00100a
Piper nigrum L. (black and white peppercorn) is one of the most common culinary spices used worldwide. The current study aims to dissect pepper metabolome using 1H-NMR targeting of its major primary and secondary metabolites. Eighteen metabolites were identified with piperine detected in black and white pepper at 20.2 and 23.9 mg mg−1, respectively. Aroma profiling using HS-SPME coupled to GC-MS analysis and in the context of autoclave treatment led to the detection of a total of 52 volatiles with an abundance of b-caryophyllene at 82% and 59% in black and white pepper, respectively. Autoclaving of black and white pepper revealed improvement of pepper aroma as manifested by an increase in oxygenated compounds\' level. In vitro remote antimicrobial activity against food-borne Gram-positive and Gram-negative bacteria revealed the highest activity against P. aeruginosa (VP-MIC 16.4 and 12.9 mg mL−1) and a direct effect against Enterobacter cloacae at ca. 11.6 mg mL−1 for both white and black pepper.
Publikation
Otify, A. M.; Ibrahim, R. M.; Abib, B.; Laub, A.; Wessjohann, L. A.; Jiang, Y.; Farag, M. A.;Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC–MS, and UV–Vis in relation to antioxidant effects as analyzed using molecular networking and chemometricsFood Chem.417135866(2023)DOI: 10.1016/j.foodchem.2023.135866
Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV–Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC–MS unveiled monosaccharides as the main contributors to samples’ segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes’ metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.