Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Plants are constantly exposed to environmental changes and need to integrate multiple external stress cues. Calcium-dependent protein kinases (CDPKs) are implicated as major primary Ca2+ sensors in plants. CDPK activation, like activation of mitogen-activated protein kinases (MAPKs), is triggered by biotic and abiotic stresses, although distinct stimulus-specific stress responses are induced. To investigate whether CDPKs are part of an underlying mechanism to guarantee response specificity, we identified CDPK-controlled signaling pathways. A truncated form of Nicotiana tabacum CDPK2 lacking its regulatory autoinhibitor and calcium-binding domains was ectopically expressed in Nicotiana benthamiana. Infiltrated leaves responded to an abiotic stress stimulus with the activation of biotic stress reactions. These responses included synthesis of reactive oxygen species, defense gene induction, and SGT1-dependent cell death. Furthermore, N-terminal CDPK2 signaling triggered enhanced levels of the phytohormones jasmonic acid, 12-oxo-phytodienoic acid, and ethylene but not salicylic acid. These responses, commonly only observed after challenge with a strong biotic stimulus, were prevented when the CDPK's intrinsic autoinhibitory peptide was coexpressed. Remarkably, elevated CDPK signaling compromised stress-induced MAPK activation, and this inhibition required ethylene synthesis and perception. These data indicate that CDPK and MAPK pathways do not function independently and that a concerted activation of both pathways controls response specificity to biotic and abiotic stress.
Publikation
Poeaknapo, C.; Schmidt, J.; Brandsch, M.; Dräger, B.; Zenk, M. H.;Endogenous formation of morphine in human cellsProc. Natl. Acad. Sci. U.S.A.10114091-14096(2004)DOI: 10.1073/pnas.0405430101
Morphine is a plant (opium poppy)-derived alkaloid and one of the strongest known analgesic compounds. Studies from several laboratories have suggested that animal and human tissue or fluids contain trace amounts of morphine. Its origin in mammals has been believed to be of dietary origin. Here, we address the question of whether morphine is of endogenous origin or derived from exogenous sources. Benzylisoquinoline alkaloids present in human neuroblastoma cells (SH-SY5Y) and human pancreas carcinoma cells (DAN-G) were identified by GC/tandem MS (MS/MS) as norlaudanosoline (DAN-G), reticuline (DAN-G and SH-SY5Y), and morphine (10 nM, SH-SY5Y). The stereochemistry of reticuline was determined to be 1-(S). Growth of the SH-SY5Y cell line in the presence of 18O2 led to the [18O]-labeled morphine that had the molecular weight 4 mass units higher than if grown in 16O2, indicating the presence of two atoms of 18O per molecule of morphine. Growth of DAN-G cells in an 18O2 atmosphere yielded norlaudanosoline and (S)-reticuline, both labeled at only two of the four oxygen atoms. This result clearly demonstrates that all three alkaloids are of biosynthetic origin and suggests that norlaudanosoline and (S)-reticuline are endogenous precursors of morphine. Feeding of [ring-13C6]-tyramine, [1-13C, N- 13CH3]-(S)-reticuline and [N-CD3]-thebaine to the neuroblastoma cells led each to the position-specific labeling of morphine, as established by GC/MS/MS. Without doubt, human cells can produce the alkaloid morphine. The studies presented here serve as a platform for the exploration of the function of “endogenous morphine” in the neurosciences and immunosciences.
Publikation
Weid, M.; Ziegler, J.; Kutchan, T. M.;The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferumProc. Natl. Acad. Sci. U.S.A.10113957-13962(2004)DOI: 10.1073/pnas.0405704101
The opium poppy, Papaver somniferum, is one of mankind's oldest medicinal plants. Opium poppy today is the commercial source of the narcotic analgesics morphine and codeine. Along with these two morphinans, opium poppy produces approximately eighty alkaloids belonging to various tetrahydrobenzylisoquinoline-derived classes. It has been known for over a century that morphinan alkaloids accumulate in the latex of opium poppy. With identification of many of the enzymes of alkaloid biosynthesis in this plant, biochemical data suggested involvement of multiple cell types in alkaloid biosynthesis in poppy. Herein the immunolocalization of five enzymes of alkaloid formation in opium poppy is reported: (R,S)-3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase central to the biosynthesis of tetrahydroisoquinoline-derived alkaloids, the berberine bridge enzyme of the sanguinarine pathway, (R,S)-reticuline 7-O-methyltransferase specific to laudanosine formation, and salutaridinol 7-O-acetyltransferase and codeinone reductase, which lead to morphine. In capsule and stem, both O-methyltransferases and the O-acetyltransferase are found predominantly in parenchyma cells within the vascular bundle, and codeinone reductase is localized to laticifers, the site of morphinan alkaloid accumulation. In developing root tip, both O-methyltransferases and the O-acetyltransferase are found in the pericycle of the stele, and the berberine bridge enzyme is localized to parenchyma cells of the root cortex. Laticifers are not found in developing root tip, and, likewise, codeinone reductase was not detected. These results provide cell-specific localization that gives a coherent picture of the spatial distribution of alkaloid biosynthesis in opium poppy.
Publikation
Proels, R. K.; Hause, B.; Berger, S.; Roitsch, T.;Novel mode of hormone induction of tandem tomato invertase genes in floral tissuesPlant Mol. Biol.52191-201(2003)DOI: 10.1023/A:1023973705403
The genomic organization of two extracellular invertase genes from tomato (Lin5 and Lin7), which are linked in a direct tandem repeat, and their tissue-specific and hormone-inducible expression are shown. Transient expression analysis ofLin5 promoter sequences fused to the β-glucuronidase (GUS) reporter gene (uidA) demonstrates a specific expression of Lin5during tomato fruit development. A Lin5 promoter fragment was fused to the truncated nos promoter to analyse hormone induction via GUS reporter gene activity in transiently transformed tobacco leaves. A specific up-regulation of GUS activity conferred by this Lin5 promoter fragment in response to gibberellic acid (GA), auxin and abscisic acid (ABA) treatment was observed, indicating a critical role of the regulation of Lin5 by phytohormones in tomato flower and fruit development. In situ hybridization analysis of Lin7 shows a high tissue-specific expression in tapetum and pollen. These results support an important role for Lin5 and Lin7 extracellular invertases in the development of reproductive organs in tomato and contribute to unravel the underlying regulatory mechanisms.