Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Ricardo, M. G.; Llanes, D.; Rennert, R.; Jänicke, P.; Rivera, D. G.; Wessjohann, L. A.;Improved access to potent anticancer tubulysins and linker‐functionalized payloads via an all‐on‐resin strategyChem.-Eur. J.30e202401943(2024)DOI: 10.1002/chem.202401943
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide‐drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e.g., by using small tertiary amide N‐substituents (Me, Et, Pr) on tubuvaline residue. Cumbersome solution‐phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p‐Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all‐on‐resin strategy permitting a loss‐free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on‐resin tubulysin derivatization with, e.g., a maleimido‐Val‐Cit‐PABQ linker, which is a notable progress for the payload‐PABQ‐linker technology. The strategy also allows tubulysin diversification of the internal amide N‐substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker‐attachment and functionalization.
Publikation
Noleto‐Dias, C.; Farag, M. A.; Porzel, A.; Tavares, J. F.; Wessjohann, L. A.;A multiplex approach of MS, 1D‐, and 2D‐NMR metabolomics in plant ontogeny: A case study on Clusia minor L. organs (leaf, flower, fruit, and seed)Phytochem. Anal.35445-468(2024)DOI: 10.1002/pca.3300
Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.
Publikation
Ricardo, M. G.; Schwark, M.; Llanes, D.; Niedermeyer, T. H. J.; Westermann, B.;Total synthesis of Aetokthonotoxin, the cyanobacterial neurotoxin causing vacuolar myelinopathyChem.-Eur. J.2712032-12035(2021)DOI: 10.1002/chem.202101848
Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2’-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.
Publikation
Ricardo, M. G.; Marrero, J. F.; Valdés, O.; Rivera, D. G.; Wessjohann, L. A.;A Peptide Backbone Stapling Strategy Enabled by the Multicomponent Incorporation of Amide N‐SubstituentsChem.-Eur. J.25769-774(2019)DOI: 10.1002/chem.201805318
The multicomponent backbone N‐modification of peptides on solid‐phase is presented as a powerful and general method to enable peptide stapling at the backbone instead of the side chains. This work shows that a variety of functionalized N‐substituents suitable for backbone stapling can be readily introduced by means of on‐resin Ugi multicomponent reactions conducted during solid‐phase peptide synthesis. Diverse macrocyclization chemistries were implemented with such backbone N‐substituents, including the ring‐closing metathesis, lactamization, and thiol alkylation. The backbone N‐modification method was also applied to the synthesis of α‐helical peptides by linking N‐substituents to the peptide N‐terminus, thus featuring hydrogen‐bond surrogate structures. Overall, the strategy proves useful for peptide backbone macrocyclization approaches that show promise in peptide drug discovery.