Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Müllers, Y.; Sadr, A. S.; Schenderlein, M.; Pallab, N.; D. Davari, M.; Glebe, U.; Reifarth, M.;Acrylate‐derived RAFT polymers for enzyme hyperactivation – boosting the α‐chymotrypsin enzyme activity using tailor‐made poly(2‐carboxyethyl)acrylate (PCEA)ChemCatChem16e202301685(2024)DOI: 10.1002/cctc.202301685
We study the hyperactivation of α‐chymotrypsin (α‐ChT) using the acrylate polymer poly(2‐carboxyethyl) acrylate (PCEA) in comparison to the commonly used poly(acrylic acid) (PAA). The polymers are added during the enzymatic cleavage reaction of the substrate N‐glutaryl‐L‐phenylalanine p‐nitroanilide (GPNA). Enzyme activity assays reveal a pronounced enzyme hyperactivation capacity of PCEA, which reaches up to 950% activity enhancement, and is significantly superior to PAA (revealing an activity enhancement of approx. 450%). In a combined experimental and computational study, we investigate α‐ChT/polymer interactions to elucidate the hyperactivation mechanism of the enzyme. Isothermal titration calorimetry reveals a pronounced complexation between the polymer and the enzyme. Docking simulations reveal that binding of polymers significantly improves the binding affinity of GPNA to α‐ChT. Notably, a higher binding affinity is found for the α‐ChT/PCEA compared to the α‐ChT/PAA complex. Further molecular dynamics (MD) simulations reveal changes in the size of the active site in the enzyme/polymer complexes, with PCEA inducing a more pronounced alteration compared to PAA, facilitating an easier access for the substrate to the active site of α‐ChT.
Publikation
Ricardo, M. G.; Llanes, D.; Rennert, R.; Jänicke, P.; Rivera, D. G.; Wessjohann, L. A.;Improved access to potent anticancer tubulysins and linker‐functionalized payloads via an all‐on‐resin strategyChem.-Eur. J.30e202401943(2024)DOI: 10.1002/chem.202401943
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide‐drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e.g., by using small tertiary amide N‐substituents (Me, Et, Pr) on tubuvaline residue. Cumbersome solution‐phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p‐Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all‐on‐resin strategy permitting a loss‐free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on‐resin tubulysin derivatization with, e.g., a maleimido‐Val‐Cit‐PABQ linker, which is a notable progress for the payload‐PABQ‐linker technology. The strategy also allows tubulysin diversification of the internal amide N‐substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker‐attachment and functionalization.
Publikation
Dippe, M.; Davari, M. D.; Weigel, B.; Heinke, R.; Vogt, T.; Wessjohann, L. A.;Altering the regiospecificity of a catechol
O‐methyltransferase through rational design: Vanilloid vs. isovanilloid motifs in the B‐ring of flavonoidsChemCatChem14e202200511(2022)DOI: 10.1002/cctc.202200511
Rational re-design of the substrate pocket of phenylpropanoid-flavonoid O-methyltransferase (PFOMT) from Mesembryanthe-mum crystallinum, an enzyme that selectively methylates the 3’-position (= meta-position) in catechol-moieties of flavonoids to guiacol-moieties, provided the basis for the generation of variants with opposite, i. e. 4’- (para-) regioselectivity and enhanced catalytic efficiency. A double variant (Y51R/N202W) identified through a newly developed colorimetric assay efficiently modified the para-position in flavanone and flavano-nol substrates, providing access to the sweetener molecule hesperetin and other rare plant flavonoids having an isovanil-loid motif.
Publikation
Ricardo, M. G.; Schwark, M.; Llanes, D.; Niedermeyer, T. H. J.; Westermann, B.;Total synthesis of Aetokthonotoxin, the cyanobacterial neurotoxin causing vacuolar myelinopathyChem.-Eur. J.2712032-12035(2021)DOI: 10.1002/chem.202101848
Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2’-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.