Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publikation
Schuster, M.; Eisele, S.; Armas-Egas, L.; Kessenbrock, T.; Kourelis, J.; Kaiser, M.; Hoorn, R. A.;Enhanced late blight resistance by engineering an EpiC2B‐insensitive immune proteasePlant Biotechnol. J.22284-286(2024)DOI: 10.1111/pbi.14209
Schindele, P.; Merker, L.; Schreiber, T.; Prange, A.; Tissier, A.; Puchta, H.;Enhancing gene editing and gene targeting efficiencies in
Arabidopsis thaliana
by using an intron‐containing version of
ttLbCas12a
Plant Biotechnol. J.21457-459(2023)DOI: 10.1111/pbi.13964
Ravindran, B. M.; Rizzo, P.; Franke, K.; Fuchs, J.; D’Auria, J.;Simple and robust multiple shoot regeneration and root induction cycle from different explants of Hypericum perforatum L. genotypesPlant Cell Tiss. Organ Cult.1521-15(2023)DOI: 10.1007/s11240-022-02370-w
Hypericum perforatum L. commonly known as Saint John’s Wort (SJW) is an economically important medicinal plant known for accumulating its valuable bioactive compounds in a compartmentalized fashion. The dark glands are very rich in hypericin, and translucent glands are filled with hyperforin. The antibiotic properties of the afore mentioned bioactive compounds make it hard to establish tissue regeneration protocols essential to put in place a transformation platform that is required for testing gene function in this challenging species. In this study, we report the establishment of a regeneration and root induction cycle from different types of explants. The regeneration cycle was set up for the continuous supply of roots and leaf explants for downstream transformation experiments. The most effective medium to obtain multiple shoot-buds from node cultures was MS (Murashige and Skoog, Physiol Plant 15:473–497, 1962) medium supplemented with 0.5 mg L−1 6-Benzylaminopurine (BAP) and 0.5 mg L−1 indole-3-butyric acid (IBA). The same combination yielded copious amounts of shoots from root and leaf explants as well. For rooting the elongated shoots, MS medium devoid of plant growth regulators (PGRs) was sufficient. Nevertheless, addition of a low amount of IBA improved the quantity and quality of roots induced. Additionally, the roots obtained on a medium containing IBA readily developed shoot buds.