Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Bassal, M.; Abukhalaf, M.; Majovsky, P.; Thieme, D.; Herr, T.; Ayash, M.; Tabassum, N.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Lee, J.; Neumann, S.; Hoehenwarter, W.;Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and ImmunityMol. Plant131709-1732(2020)DOI: 10.1016/j.molp.2020.09.024
Proteome remodeling is a fundamental adaptive response, and proteins in
complexes and functionally related proteins are often co-expressed.
Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana
tissues with around 10 000 proteins per tissue, and absolutely quantify
(copy numbers per cell) nearly 16 000 proteins throughout the plant
lifecycle. A proteome-wide survey of global post-translational
modification revealed amino acid exchanges pointing to potential
conservation of translational infidelity in eukaryotes. Correlation
analysis of protein abundance uncovered potentially new tissue- and
age-specific roles of entire signaling modules regulating transcription
in photosynthesis, seed development, and senescence and abscission.
Among others, the data suggest a potential function of RD26 and other
NAC transcription factors in seed development related to desiccation
tolerance as well as a possible function of cysteine-rich receptor-like
kinases (CRKs) as ROS sensors in senescence. All of the components of
ribosome biogenesis factor (RBF) complexes were found to be co-expressed
in a tissue- and age-specific manner, indicating functional promiscuity
in the assembly of these less-studied protein complexes in Arabidopsis. Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis
seeldings with flg22. Through simultaneously monitoring
phytohormone and transcript changes upon flg22 treatment, we obtained
strong evidence of suppression of jasmonate (JA) and JA-isoleucine
(JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3
(IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under
the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an
unrecognized role of a new JA regulatory switch in pattern-triggered
immunity. Taken together, the datasets generated in this study present
extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.
Publikation
Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J.;Comparative expression profiling reveals a role of the root apoplast in local phosphate responseBMC Plant Biol.16106(2016)DOI: 10.1186/s12870-016-0790-8
BackgroundPlant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe3+) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth.ResultsWe took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root.ConclusionOur study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.