Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Khalil, S.; Strah, R.; Lodovici, A.; Vojta, P.; Berardinis, F. D.; Ziegler, J.; Novak, M. P.; Zanin, L.; Tomasi, N.; Forneck, A.; Griesser, M.;The activation of iron deficiency responses of grapevine rootstocks is dependent to the availability of the nitrogen formsBMC Plant Biol.24218(2024)DOI: 10.1186/s12870-024-04906-y
Background
In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis.
Results The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3−/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3−/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms.
Conclusions Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.
Publikation
Wasternack, C.; Hause, B.;BFP1: One of 700 Arabidopsis F-box proteins mediates degradation of JA oxidases to promote plant immunityMol. Plant17375-376(2024)DOI: 10.1016/j.molp.2024.02.008
Mittelberger, C.; Moser, M.; Hause, B.; Janik, K.;‘Candidatus Phytoplasma mali’ SAP11-Like protein modulates expression of genes involved in energy production, photosynthesis, and defense in Nicotiana occidentalis leavesBMC Plant Biol.24393(2024)DOI: 10.1186/s12870-024-05087-4
Background
‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration.Results
The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced.Conclusions
The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.
Publikation
Liu, Y.; Esposto, D.; Mahdi, L. K.; Porzel, A.; Stark, P.; Hussain, H.; Scherr-Henning, A.; Isfort, S.; Bathe, U.; Acosta, I. F.; Zuccaro, A.; Balcke, G. U.; Tissier, A.;Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance the colonization by Bipolaris sorkiniana of barley rootsMol. Plant171307-1327(2024)DOI: 10.1016/j.molp.2024.07.006
Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-b-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.