Omanische Heilpflanze im Fokus der Phytochemie IPB-Wissenschaftler und Partner aus Dhofar haben jüngst die omanische Heilpflanze Terminalia dhofarica unter die phytochemische Lupe genommen. Die Pflanze ist reich an…
Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Mittasch, J.; Böttcher, C.; Frolov, A.; Strack, D.; Milkowski, C.;Reprogramming the Phenylpropanoid Metabolism in Seeds of Oilseed Rape by Suppressing the Orthologs of REDUCED EPIDERMAL FLUORESCENCE1J. Plant Physiol.1611656-1669(2013)DOI: 10.1104/pp.113.215491
As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene REDUCED EPIDERMAL FLUORESCENCE1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation of ferulate and sinapate from the corresponding aldehydes, thereby linking lignin and hydroxycinnamate biosynthesis as a potential branch-point enzyme. We used RNA interference to silence REF1 genes in seeds of oilseed rape. Nontargeted metabolite profiling showed that BnREF1-suppressing seeds produced a novel chemotype characterized by reduced levels of sinapate esters, the appearance of conjugated monolignols, dilignols, and trilignols, altered accumulation patterns of kaempferol glycosides, and changes in minor conjugates of caffeate, ferulate, and 5-hydroxyferulate. BnREF1 suppression affected the level of minor sinapate conjugates more severely than that of the major component sinapine. Mapping of the changed metabolites onto the phenylpropanoid metabolic network revealed partial redirection of metabolic sequences as a major impact of BnREF1 suppression.
Publikation
Teutschbein, J.; Gross, W.; Nimtz, M.; Milkowski, C.; Hause, B.; Strack, D.;Identification and Localization of a Lipase-like Acyltransferase in Phenylpropanoid Metabolism of Tomato (Solanum lycopersicum)J. Biol. Chem.28538374-38381(2010)DOI: 10.1074/jbc.M110.171637
We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.
Publikation
Vierheilig, H.; Maier, W.; Wyss, U.; Samson, J.; Strack, D.; Piché, Y.;Cyclohexenone derivative- and phosphate-levels in split-root systems and their role in the systemic suppression of mycorrhization in precolonized barley plantsJ. Plant Physiol.157593-599(2000)DOI: 10.1016/S0176-1617(00)80001-2
In a split-root system root colonization by the arbuscular mycorrhizal fungus Glomus mosseae on one side is reduced when roots on the other side are already colonized by G. mosseae. Root colonization by arbuscular mycorrhizal fungi enhances the P-status of plants, thus the observed suppressional effect on further root colonization in precolonized barley plants could be P-level regulated. Split-root systems allow to separate plant mediated P-effects on root colonization by arbuscular mycorrhizal fungi from direct P-effects on arbuscular mycorrhizal fungi. By adding a KH2PO4-solution to one side of the split-root system of non-mycorrhizal control plants, higher P-levels were obtained as in split-root systems of G. mosseae precolonized plants. Subsequent inoculation with G. mosseae of the P-supplied and the precolonized plants resulted in an inhibition of root colonization in the precolonized plants, but not in the P-supplied plants, discarding the enhanced P-level as the responsible factor for the observed suppression. Cyclohexenone derivatives are secondary plant compounds only found in roots of mycorrhizal plants. Analysis of cyclohexenone derivatives in mycorrhizal and non-mycorrhizal roots in split-root systems revealed that cyclohexenone derivatives can be detected in mycorrhizal roots, but not in non-mycorrhizal roots of mycorrhizal plants. The presented results show clearly that cyclohexenone derivatives are not systemically accumulated and that the P-levels are not the responsible factors for the observed systemic suppression of mycorrhization in roots of precolonized barley plants.
Publikation
Schmidt, A.; Grimm, R.; Schmidt, J.; Scheel, D.; Strack, D.; Rosahl, S.;Cloning and Expression of a Potato cDNA Encoding Hydroxycinnamoyl-CoA:Tyramine N-(Hydroxycinnamoyl)transferaseJ. Biol. Chem.2744273-4280(1999)DOI: 10.1074/jbc.274.7.4273
Hydroxycinnamoyl-CoA:tyramineN-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) catalyzes the transfer of hydroxycinnamic acids from the respective CoA esters to tyramine and other amines in the formation ofN-(hydroxycinnamoyl)amines. Expression of THT is induced byPhytophthora infestans, the causative agent of late blight disease in potato. The amino acid sequences of nine endopeptidase LysC-liberated peptides from purified potato THT were determined. Using degenerate primers, a THT-specific fragment was obtained by reverse transcription-polymerase chain reaction, and THT cDNA clones were isolated from a library constructed from RNA of elicitor-treated potato cells. The open reading frame encoding a protein of 248 amino acids was expressed in Escherichia coli. Recombinant THT exhibited a broad substrate specificity, similar to that of native potato THT, accepting cinnamoyl-, 4-coumaroyl-, caffeoyl-, feruloyl- and sinapoyl-CoA as acyl donors and tyramine, octopamine, and noradrenalin as acceptors tested. Elicitor-induced THT transcript accumulation in cultured potato cells peaked 5 h after initiation of treatment, whereas enzyme activity was highest from 5 to 30 h after elicitation. In soil-grown potato plants, THT mRNA was most abundant in roots. Genomic Southern analyses indicate that, in potato, THT is encoded by a multigene family.