Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Eldehna, W. M.; Fares, M.; Bonardi, A.; Avgenikos, M.; Baselious, F.; Schmidt, M.; Al-Warhi, T.; Abdel-Aziz, H. A.; Rennert, R.; Peat, T. S.; Supuran, C. T.; Wessjohann, L. A.; Ibrahim, H. S.;4-(Pyrazolyl)benzenesulfonamide Ureas as Carbonic Anhydrases Inhibitors and Hypoxia-Mediated Chemo-Sensitizing Agents in Colorectal Cancer CellsJ. Med. Chem.6720438-20454(2024)DOI: 10.1021/acs.jmedchem.4c01894
Hypoxia in tumors contributes to chemotherapy resistance, worsened by acidosis driven by carbonic anhydrases (hCA IX and XII). Targeting these enzymes can mitigate acidosis, thus enhancing tumor sensitivity to cytotoxic drugs. Herein, novel 4-(pyrazolyl)benzenesulfonamide ureas (SH7a−t) were developed and evaluated for their inhibitory activity against hCA IX and XII. They showed promising results (hCA IX: KI =15.9−67.6 nM, hCA XII: KI = 16.7−65.7 nM). Particularly, SH7s demonstrated outstanding activity (KIs = 15.9 nM for hCA IX and 55.2 nM for hCA XII) and minimal off-target kinase inhibition over a panel of 258 kinases. In NCI anticancer screening, SH7s exhibited broad-spectrum activity with an effective growth inhibition full panel GI50 (MG-MID) value of 3.5 μM and a subpanel GI50 (MG-MID) range of 2.4−6.3 μM. Furthermore, SH7s enhanced the efficacy of Taxol and 5-fluorouracil in cotreatment regimens under hypoxic conditions in HCT-116 colorectal cancer cells, indicating its potential as a promising anticancer agent.
Publikation
Jablonická, V.; Ziegler, J.; Vatehová, Z.; Lišková, D.; Heilmann, I.; Obložinský, M.; Heilmann, M.;Inhibition of phospholipases influences the metabolism of wound-induced benzylisoquinoline alkaloids in Papaver somniferum L.J. Plant Physiol.2231-8(2018)DOI: 10.1016/j.jplph.2018.01.007
Benzylisoquinoline alkaloids (BIAs) are important secondary plant metabolites and include medicinally relevant drugs, such as morphine or codeine. As the de novo synthesis of BIA backbones is (still) unfeasible, to date the opium poppy plant Papaver somniferum L. represents the main source of BIAs. The formation of BIAs is induced in poppy plants by stress conditions, such as wounding or salt treatment; however, the details about regulatory processes controlling BIA formation in opium poppy are not well studied. Environmental stresses, such as wounding or salinization, are transduced in plants by phospholipid-based signaling pathways, which involve different classes of phospholipases. Here we investigate whether pharmacological inhibition of phospholipase A2 (PLA2, inhibited by aristolochic acid (AA)) or phospholipase D (PLD; inhibited by 5-fluoro-2-indolyl des-chlorohalopemide (FIPI)) in poppy plants influences wound-induced BIA accumulation and the expression of key biosynthetic genes. We show that inhibition of PLA2 results in increased morphinan biosynthesis concomitant with reduced production of BIAs of the papaverine branch, whereas inhibition of PLD results in increased production of BIAs of the noscapine branch. The data suggest that phospholipid-dependent signaling pathways contribute to the activation of morphine biosynthesis at the expense of the production of other BIAs in poppy plants. A better understanding of the effectors and the principles of regulation of alkaloid biosynthesis might be the basis for the future genetic modification of opium poppy to optimize BIA production.
Publikation
Frolov, A.; Bilova, T.; Paudel, G.; Berger, R.; Balcke, G. U.; Birkemeyer, C.; Wessjohann, L. A.;Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought modelJ. Plant Physiol.20870-83(2017)DOI: 10.1016/j.jplph.2016.09.013
Drought is one of the most important environmental stressors resulting in increasing losses of crop plant productivity all over the world. Therefore, development of new approaches to increase the stress tolerance of crop plants is strongly desired. This requires precise and adequate modeling of drought stress. As this type of stress manifests itself as a steady decrease in the substrate water potential (ψw), agar plates infused with polyethylene glycol (PEG) are the perfect experimental tool: they are easy in preparation and provide a constantly reduced ψw, which is not possible in soil models. However, currently, this model is applicable only to seedlings and cannot be used for evaluation of stress responses in mature plants, which are obviously the most appropriate objects for drought tolerance research. To overcome this limitation, here we introduce a PEG-based agar infusion model suitable for 6–8-week-old A. thaliana plants, and characterize, to the best of our knowledge for the first time, the early drought stress responses of adult plants grown on PEG-infused agar. We describe essential alterations in the primary metabolome (sugars and related compounds, amino acids and polyamines) accompanied by qualitative and quantitative changes in protein patterns: up to 87 unique stress-related proteins were annotated under drought stress conditions, whereas further 84 proteins showed a change in abundance. The obtained proteome patterns differed slightly from those reported for seedlings and soil-based models.
Publikation
Janik, K.; Mithöfer, A.; Raffeiner, M.; Stellmach, H.; Hause, B.; Schlink, K.;An effector of apple proliferation phytoplasma targets TCP transcription factors—a generalized virulence strategy of phytoplasma?Mol. Plant Pathol.18435-442(2017)DOI: 10.1111/mpp.12409
The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple‐growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11‐like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11‐like proteins seem to be key players in phytoplasmal infection.