Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Publikation
Manh, M. B.; Ost, C.; Peiter, E.; Hause, B.; Krupinska, K.; Humbeck, K.;WHIRLY1 acts upstream of ABA-related reprogramming of drought-induced gene expression in Barley and affects stress-related histone modificationsInt. J. Mol. Sci.246326(2023)DOI: 10.3390/ijms24076326
WHIRLY1, a small plant-specific ssDNA-binding protein, dually located in chloroplasts and the nucleus, is discussed to act as a retrograde signal transmitting a stress signal from the chloroplast to the nucleus and triggering there a stress-related gene expression. In this work, we investigated the function of WHIRLY1 in the drought stress response of barley, employing two overexpression lines (oeW1-2 and oeW1-15). The overexpression of WHIRLY1 delayed the drought-stress-related onset of senescence in primary leaves. Two abscisic acid (ABA)-dependent marker genes of drought stress, HvNCED1 and HvS40, whose expression in the wild type was induced during drought treatment, were not induced in overexpression lines. In addition, a drought-related increase in ABA concentration in the leaves was suppressed in WHIRLY1 overexpression lines. To analyze the impact of the gain-of-function of WHIRLY1 on the drought-related reprogramming of nuclear gene expression, RNAseq was performed comparing the wild type and an overexpression line. Cluster analyses revealed a set of genes highly up-regulated in response to drought in the wild type but not in the WHIRLY1 overexpression lines. Among these genes were many stress- and abscisic acid (ABA)-related ones. Another cluster comprised genes up-regulated in the oeW1 lines compared to the wild type. These were related to primary metabolism, chloroplast function and growth. Our results indicate that WHIRLY1 acts as a hub, balancing trade-off between stress-related and developmental pathways. To test whether the gain-of-function of WHIRLY1 affects the epigenetic control of stress-related gene expression, we analyzed drought-related histone modifications in different regions of the promoter and at the transcriptional start sites of HvNCED1 and HvS40. Interestingly, the level of euchromatic marks (H3K4me3 and H3K9ac) was clearly decreased in both genes in a WHIRLY1 overexpression line. Our results indicate that WHIRLY1, which is discussed to act as a retrograde signal, affects the ABA-related reprogramming of nuclear gene expression during drought via differential histone modifications.
Publikation
Eichhorn, T.; Kolbe, F.; Mišić, S.; Dimić, D.; Morgan, I.; Saoud, M.; Milenković, D.; Marković, Z.; Rüffer, T.; Dimitrić Marković, J.; Kaluđerović, G. N.;Synthesis, crystallographic structure, theoretical analysis, molecular docking studies, and biological activity evaluation of Binuclear Ru(II)-1-Naphthylhydrazine ComplexInt. J. Mol. Sci.24689(2023)DOI: 10.3390/ijms24010689
Ruthenium(II)–arene complexes have gained significant research interest due to their possible application in cancer therapy. In this contribution two new complexes are described, namely [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-1-N,N′-naphthyl)]X (X = Cl, 1; PF6, 2), which were fully characterized by IR, NMR, and elemental microanalysis. Furthermore, the structure of 2 in the solid state was determined by a single crystal X-ray crystallographic study, confirming the composition of the crystals as 2·2MeOH. The Hirshfeld surface analysis was employed for the investigation of interactions that govern the crystal structure of 2·2MeOH. The structural data for 2 out of 2·2MeOH was used for the theoretical analysis of the cationic part [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-1-N,N′-naphthyl)]+ (2a) which is common to both 1 and 2. The density functional theory, at B3LYP/6-31+G(d,p) basis set for H, C, N, and Cl atoms and LanL2DZ for Ru ions, was used for the optimization of the 2a structure. The natural bond orbital and quantum theory of atoms in molecules analyses were employed to quantify the intramolecular interactions. The reproduction of experimental IR and NMR spectra proved the applicability of the chosen level of theory. The binding of 1 to bovine serum albumin was examined by spectrofluorimetry and molecular docking, with complementary results obtained. Compound 1 acted as a radical scavenger towards DPPH• and HO• radicals, along with high activity towards cancer prostate and colon cell lines.
Publikation
Rodriguez, A.; Martell-Huguet, E. M.; González-García, M.; Alpízar-Pedraza, D.; Alba, A.; Vazquez, A. A.; Grieshober, M.; Spellerberg, B.; Stenger, S.; Münch, J.; Kissmann, A.-K.; Rosenau, F.; Wessjohann, L. A.; Wiese, S.; Ständker, L.; Otero-González, A. J.;Identification and characterization of three new antimicrobial peptides from the marine mollusk Nerita versicolor (Gmelin, 1791)Int. J. Mol. Sci.243852(2023)DOI: 10.3390/ijms24043852
Mollusks have been widely investigated for antimicrobial peptides because their humoral defense against pathogens is mainly based on these small biomolecules. In this report, we describe the identification of three novel antimicrobial peptides from the marine mollusk Nerita versicolor. A pool of N. versicolor peptides was analyzed with nanoLC-ESI-MS-MS technology, and three potential antimicrobial peptides (Nv-p1, Nv-p2 and Nv-p3) were identified with bioinformatical predictions and selected for chemical synthesis and evaluation of their biological activity. Database searches showed that two of them show partial identity to histone H4 peptide fragments from other invertebrate species. Structural predictions revealed that they all adopt a random coil structure even when placed near a lipid bilayer patch. Nv-p1, Nv-p2 and Nv-p3 exhibited activity against Pseudomonas aeruginosa. The most active peptide was Nv-p3 with an inhibitory activity starting at 1.5 µg/mL in the radial diffusion assays. The peptides were ineffective against Klebsiella pneumoniae, Listeria monocytogenes and Mycobacterium tuberculosis. On the other hand, these peptides demonstrated effective antibiofilm action against Candida albicans, Candida parapsilosis and Candida auris but not against the planktonic cells. None of the peptides had significant toxicity on primary human macrophages and fetal lung fibroblasts at effective antimicrobial concentrations. Our results indicate that N. versicolor-derived peptides represent new AMP sequences and have the potential to be optimized and developed into antibiotic alternatives against bacterial and fungal infections.