Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Mpetga, J. D. S.; Nago, R. D. T.; Tamokou, J.-D.-D.; Fobofou, S. A. T.; Bitchagno, G. T. M.; Wessjohann, L. A.; Tene, M.; Ngouela, A. S.;A new ceramide from Cissus aralioides Baker (Vitaceae) and its antimicrobial activityChem. Biodivers.19e202200678(2022)DOI: 10.1002/cbdv.202200678
Purification through repeated column chromatography over silica gel and Sephadex LH-20 of the ethanol extract of the stems of Cissus aralioides (Baker) Planch. resulted in the isolation of a new ceramide, aralioidamide A (1) along with five known compounds (2-6). Their structures were determined by the extensive analysis of their spectroscopic (1D and 2D NMR) and spectrometric data, and comparison with those reported in the literature. Aralioidamide A (1) displayed weak antibacterial activity (MIC = 256 μg/mL) against Bacillus subtilis, Staphylococcus aureus and Shigella flexneri and was inactive (MIC > 256 μg/mL) against the tested fungi.
Publikation
Mittersteiner, M.; Pereira, G. S.; Silva, Y.; Wessjohann, L. A.; Bonacorso, H. G.; Martins, M. A. P.; Zanatta, N.;Substituent-driven selective N-/O-alkylation of 4-(trihalomethyl)pyrimidin-2(1H)-ones using brominated enonesJ. Org. Chem.874590-4602(2022)DOI: 10.1021/acs.joc.1c02919
The selective N- or O-alkylation of 4-(trihalomethyl)-pyrimidin-2(1H)-ones, using 5-bromo enones/enaminones as alkylating agents, is reported. It was found that the selectivity toward the N-or O-regioisomer is driven by the substituent present at the 6-position of the pyrimidine ring, thus enabling the preparation of each isomer as the sole product, in 60−95% yields. Subsequent cyclocondensation of the enaminone moiety with nitrogen dinucleophiles led to pyrimidine−azole conjugates in 55−83% yields.
Publikation
Wessjohann, L. A.; Morejon, M. C.; Ojeda, G. M.; Rhoden, C. R. B.; Rivera, D. G.;Applications of Convertible Isonitriles in the Ligation and Macrocyclization of Multicomponent Reaction-Derived Peptides and DepsipeptidesJ. Org. Chem.816535-6545(2016)DOI: 10.1021/acs.joc.6b01150
Peptide ligation and macrocyclization are among the most relevant approaches in the field of peptide chemistry. Whereas a variety of strategies relying on coupling reagents and native chemical ligation are available, there is a continuous need for efficient peptide ligation and cyclization methods. Herein we report on the utilization of convertible isonitriles as effective synthetic tools for the ligation and macrocyclization of peptides arising from isocyanide-based multicomponent reactions. The strategy relies on the use of convertible isonitriles—derived from Fukuyama amines—and peptide carboxylic acids in Ugi and Passerini reactions to afford N-alkylated peptides and depsipeptides, respectively, followed by conversion of the C-terminal amide onto either N-peptidoacyl indoles or pyrroles. Such activated peptides proved efficient in the ligation to peptidic, lipidic and fluorescently labeled amines and in macrocyclization protocols. As a result, a wide set of N-substituted peptides (with methyl, glycosyl and amino acids as N-substituents), cyclic N-methylated peptides and a depsipeptide were produced in good yields using conditions that involve either classical heating or microwave irradiation. This report improves the repertoire of peptide covalent modification methods by exploiting the synthetic potential of multicomponent reactions and convertible isonitriles.
Publikation
Farag, M. A.; Al-Mahdy, D. A.; Salah El Dine, R.; Fahmy, S.; Yassin, A.; Porzel, A.; Brandt, W.;Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt PathogenChem. Biodivers.12955-962(2015)DOI: 10.1002/cbdv.201400194
Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc‐zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity‐guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5‐dihydroxy‐4‐methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5–9 mg/ml), with 3,5‐dihydroxy‐4‐methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure–activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.