Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1 (COI1)-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected years ago in wounded leaves of flowering plants, opening up the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp accumulating in response to biotic and abiotic stress in Arabidopsis (Arabidopsis thaliana). The OPDA-amino acid conjugates displayed cis-OPDA-related plant responses in a JA-Ile-dependent manner. We also showed that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are mediated by members of the amidosynthetase GRETCHEN HAGEN 3 (GH3) and the amidohydrolase INDOLE-3-ACETYL-LEUCINE RESISTANT 1 (ILR1)/ILR1-like (ILL) families. Thus, OPDA amino acid conjugates function in the catabolism or temporary storage of cis-OPDA in stress responses instead of acting as chemical signals per se.
Publikation
Lin, C.-L.; Huang, P.-C.; Gräßle, S.; Grathwol, C.; Tremouilhac, P.; Vanderheiden, S.; Hodapp, P.; Herres-Pawlis, S.; Hoffmann, A.; Fink, F.; Manolikakes, G.; Opatz, T.; Link, A.; Marques, M. M. B.; Daumann, L. J.; Tsotsalas, M.; Biedermann, F.; Mutlu, H.; Täuscher, E.; Bach, F.; Drees, T.; Neumann, S.; Harivyasi, S. S.; Jung, N.; Bräse, S.;Linking research data with physically preserved research materials in chemistrySci. Data12130(2025)DOI: 10.1038/s41597-025-04404-2
Results of scientific work in chemistry can usually be obtained in the form of materials and data. A big step towards transparency and reproducibility of the scientific work can be gained if scientists publish their data in research data repositories in a FAIR manner. Nevertheless, in order to make chemistry a sustainable discipline, obtaining FAIR data is insufficient and a comprehensive concept that includes preservation of materials is needed. In order to offer a comprehensive infrastructure to find and access data and materials that were generated in chemistry projects, we combined the infrastructure Chemotion repository with an archive for chemical compounds. Samples play a key role in this concept: we describe how FAIR metadata of a virtual sample representation can be used to refer to a physically available sample in a materials’ archive and to link it with the FAIR research data gained using the said sample. We further describe the measures to make the physically available samples not only FAIR through their metadata but also findable, accessible and reusable.
Publikation
Klein, J.; Lam, H.; Mak, T. D.; Bittremieux, W.; Perez-Riverol, Y.; Gabriels, R.; Shofstahl, J.; Hecht, H.; Binz, P.-A.; Kawano, S.; Van Den Bossche, T.; Carver, J.; Neely, B. A.; Mendoza, L.; Suomi, T.; Claeys, T.; Payne, T.; Schulte, D.; Sun, Z.; Hoffmann, N.; Zhu, Y.; Neumann, S.; Jones, A. R.; Bandeira, N.; Vizcaíno, J. A.; Deutsch, E. W.;The Proteomics Standards Initiative Standardized Formats for Spectral Libraries and Fragment Ion Peak Annotations: mzSpecLib and mzPAFAnal. Chem.9618491-18501(2024)DOI: 10.1021/acs.analchem.4c04091
Mass spectral libraries are collections of reference spectra, usually associated with specific analytes from which the spectra were generated, that are used for further downstream analysis of new spectra. There are many different formats used for encoding spectral libraries, but none have undergone a standardization process to ensure broad applicability to many applications. As part of the Human Proteome Organization Proteomics Standards Initiative (PSI), we have developed a standardized format for encoding spectral libraries, called mzSpecLib (https://psidev.info/mzSpecLib). It is primarily a data model that flexibly encodes metadata about the library entries using the extensible PSI-MS controlled vocabulary and can be encoded in and converted between different serialization formats. We have also developed a standardized data model and serialization for fragment ion peak annotations, called mzPAF (https://psidev.info/mzPAF). It is defined as a separate standard, since it may be used for other applications besides spectral libraries. The mzSpecLib and mzPAF standards are compatible with existing PSI standards such as ProForma 2.0 and the Universal Spectrum Identifier. The mzSpecLib and mzPAF standards have been primarily defined for peptides in proteomics applications with basic small molecule support. They could be extended in the future to other fields that need to encode spectral libraries for nonpeptidic analytes.
Preprints
Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.;Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plantsChemRxiv(2023)DOI: 10.26434/chemrxiv-2023-qlzj4
Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.