Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
The canonical correlation analysis (CCA) is commonly used to analyze data sets with paired data, e.g. measurements of gene expression and metabolomic intensities of the same experiments. This allows to find interesting relationships between the data sets, e.g. they can be assigned to biological processes. However, it can be difficult to interpret the processes and often the relationships observed are not related to the experimental design but to some unknown parameters.Here we present an extension of the penalized CCA, the supervised penalized approach (spCCA), where the experimental design is used as a third data set and the correlation of the biological data sets with the design data set is maximized to find interpretable and meaningful canonical variables. The spCCA was successfully tested on a data set of Arabidopsis thaliana with gene expression and metabolite intensity measurements and resulted in eight significant canonical variables and their interpretation. We provide an R-package under the GPL license.
Publikation
Creek, D. J.; Dunn, W. B.; Fiehn, O.; Griffin, J. L.; Hall, R. D.; Lei, Z.; Mistrik, R.; Neumann, S.; Schymanski, E. L.; Sumner, L. W.; Trengove, R.; Wolfender, J.-L.;Metabolite identification: are you sure? And how do your peers gauge your confidence?Metabolomics10350-353(2014)DOI: 10.1007/s11306-014-0656-8
Metabolomic data are frequently acquired using chromatographically coupled mass spectrometry (MS) platforms. For such datasets, the first step in data analysis relies on feature detection, where a feature is defined by a mass and retention time. While a feature typically is derived from a single compound, a spectrum of mass signals is more a more-accurate representation of the mass spectrometric signal for a given metabolite. Here, we report a novel feature grouping method that operates in an unsupervised manner to group signals from MS data into spectra without relying on predictability of the in-source phenomenon. We additionally address a fundamental bottleneck in metabolomics, annotation of MS level signals, by incorporating indiscriminant MS/MS (idMS/MS) data implicitly: feature detection is performed on both MS and idMS/MS data, and feature–feature relationships are determined simultaneously from the MS and idMS/MS data. This approach facilitates identification of metabolites using in-source MS and/or idMS/MS spectra from a single experiment, reduces quantitative analytical variation compared to single-feature measures, and decreases false positive annotations of unpredictable phenomenon as novel compounds. This tool is released as a freely available R package, called RAMClustR, and is sufficiently versatile to group features from any chromatographic-spectrometric platform or feature-finding software.
Publikation
Griss, J.; Jones, A. R.; Sachsenberg, T.; Walzer, M.; Gatto, L.; Hartler, J.; Thallinger, G. G.; Salek, R. M.; Steinbeck, C.; Neuhauser, N.; Cox, J.; Neumann, S.; Fan, J.; Reisinger, F.; Xu, Q.-W.; del Toro, N.; Perez-Riverol, Y.; Ghali, F.; Bandeira, N.; Xenarios, I.; Kohlbacher, O.; Vizcaíno, J. A.; Hermjakob, H.;The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider AudienceMol. Cell. Proteomics132765-2775(2014)DOI: 10.1074/mcp.O113.036681
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R.We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.