Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Peters, K.; Herman, S.; Khoonsari, P. E.; Burman, J.; Neumann, S.; Kultima, K.;Metabolic drift in the aging nervous system is reflected in human cerebrospinal fluidSci. Rep.1118822(2021)DOI: 10.1038/s41598-021-97491-1
Chronic diseases affecting the central nervous system (CNS) like
Alzheimer’s or Parkinson’s disease typically develop with advanced
chronological age. Yet, aging at the metabolic level has been explored
only sporadically in humans using biofluids in close proximity to the
CNS such as the cerebrospinal fluid (CSF). We have used an untargeted
liquid chromatography high-resolution mass spectrometry (LC-HRMS) based
metabolomics approach to measure the levels of metabolites in the CSF of
non-neurological control subjects in the age of 20 up to 74. Using a
random forest-based feature selection strategy, we extracted 69 features
that were strongly related to age (page
Publikation
Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T. M. D.; Foguet, C.; Glen, R.; Gonzalez-Beltran, A.; Günther, U. L.; Handakas, E.; Hankemeier, T.; Haug, K.; Herman, S.; Holub, P.; Izzo, M.; Jacob, D.; Johnson, D.; Jourdan, F.; Kale, N.; Karaman, I.; Khalili, B.; Emami Khoonsari, P.; Kultima, K.; Lampa, S.; Larsson, A.; Ludwig, C.; Moreno, P.; Neumann, S.; Novella, J. A.; O'Donovan, C.; Pearce, J. T. M.; Peluso, A.; Piras, M. E.; Pireddu, L.; Reed, M. A. C.; Rocca-Serra, P.; Roger, P.; Rosato, A.; Rueedi, R.; Ruttkies, C.; Sadawi, N.; Salek, R. M.; Sansone, S.-A.; Selivanov, V.; Spjuth, O.; Schober, D.; Thévenot, E. A.; Tomasoni, M.; van Rijswijk, M.; van Vliet, M.; Viant, M. R.; Weber, R. J. M.; Zanetti, G.; Steinbeck, C.;PhenoMeNal: processing and analysis of metabolomics data in the cloudGigaScience8giy149(2019)DOI: 10.1093/gigascience/giy149
BackgroundMetabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution.FindingsPhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm.ConclusionsPhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Publikation
Püllmann, P.; Ulpinnis, C.; Marillonnet, S.; Gruetzner, R.; Neumann, S.; Weissenborn, M. J.;Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer designSci. Rep.910932(2019)DOI: 10.1038/s41598-019-47376-1
Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Mutagenesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.
Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities.