Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Results of scientific work in chemistry can usually be obtained in the form of materials and data. A big step towards transparency and reproducibility of the scientific work can be gained if scientists publish their data in research data repositories in a FAIR manner. Nevertheless, in order to make chemistry a sustainable discipline, obtaining FAIR data is insufficient and a comprehensive concept that includes preservation of materials is needed. In order to offer a comprehensive infrastructure to find and access data and materials that were generated in chemistry projects, we combined the infrastructure Chemotion repository with an archive for chemical compounds. Samples play a key role in this concept: we describe how FAIR metadata of a virtual sample representation can be used to refer to a physically available sample in a materials’ archive and to link it with the FAIR research data gained using the said sample. We further describe the measures to make the physically available samples not only FAIR through their metadata but also findable, accessible and reusable.
Publikation
Marr, S.; Hageman, J. A.; Wehrens, R.; van Dam, N. M.; Bruelheide, H.; Neumann, S.;LC-MS based plant metabolic profiles of thirteen grassland species grown in diverse neighbourhoodsSci. Data852(2021)DOI: 10.1038/s41597-021-00836-8
In plants, secondary metabolite profiles provide a unique opportunity to explore seasonal variation and responses to the environment. These include both abiotic and biotic factors. In field experiments, such stress factors occur in combination. This variation alters the plant metabolic profiles in yet uninvestigated ways. This data set contains trait and mass spectrometry data of thirteen grassland species collected at four time points in the growing season in 2017. We collected above-ground vegetative material of seven grass and six herb species that were grown in plant communities with different levels of diversity in the Jena Experiment. For each sample, we recorded visible traits and acquired shoot metabolic profiles on a UPLC-ESI-Qq-TOF-MS. We performed the raw data pre-processing in Galaxy-W4M and prepared the data for statistical analysis in R by applying missing data imputation, batch correction, and validity checks on the features. This comprehensive data set provides the opportunity to investigate environmental dynamics across diverse neighbourhoods that are reflected in the metabolomic profile.
Publikation
Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T. M. D.; Foguet, C.; Glen, R.; Gonzalez-Beltran, A.; Günther, U. L.; Handakas, E.; Hankemeier, T.; Haug, K.; Herman, S.; Holub, P.; Izzo, M.; Jacob, D.; Johnson, D.; Jourdan, F.; Kale, N.; Karaman, I.; Khalili, B.; Emami Khoonsari, P.; Kultima, K.; Lampa, S.; Larsson, A.; Ludwig, C.; Moreno, P.; Neumann, S.; Novella, J. A.; O'Donovan, C.; Pearce, J. T. M.; Peluso, A.; Piras, M. E.; Pireddu, L.; Reed, M. A. C.; Rocca-Serra, P.; Roger, P.; Rosato, A.; Rueedi, R.; Ruttkies, C.; Sadawi, N.; Salek, R. M.; Sansone, S.-A.; Selivanov, V.; Spjuth, O.; Schober, D.; Thévenot, E. A.; Tomasoni, M.; van Rijswijk, M.; van Vliet, M.; Viant, M. R.; Weber, R. J. M.; Zanetti, G.; Steinbeck, C.;PhenoMeNal: processing and analysis of metabolomics data in the cloudGigaScience8giy149(2019)DOI: 10.1093/gigascience/giy149
BackgroundMetabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution.FindingsPhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm.ConclusionsPhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Publikation
Peters, K.; Gorzolka, K.; Bruelheide, H.; Neumann, S.;Computational workflow to study the seasonal variation of secondary metabolites in nine different bryophytesSci. Data5180179(2018)DOI: 10.1038/sdata.2018.179
In Eco-Metabolomics interactions are studied of non-model organisms in their natural environment and relations are made between biochemistry and ecological function. Current challenges when processing such metabolomics data involve complex experiment designs which are often carried out in large field campaigns involving multiple study factors, peak detection parameter settings, the high variation of metabolite profiles and the analysis of non-model species with scarcely characterised metabolomes. Here, we present a dataset generated from 108 samples of nine bryophyte species obtained in four seasons using an untargeted liquid chromatography coupled with mass spectrometry acquisition method (LC/MS). Using this dataset we address the current challenges when processing Eco-Metabolomics data. Here, we also present a reproducible and reusable computational workflow implemented in Galaxy focusing on standard formats, data import, technical validation, feature detection, diversity analysis and multivariate statistics. We expect that the representative dataset and the reusable processing pipeline will facilitate future studies in the research field of Eco-Metabolomics.