Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
Results of scientific work in chemistry can usually be obtained in the form of materials and data. A big step towards transparency and reproducibility of the scientific work can be gained if scientists publish their data in research data repositories in a FAIR manner. Nevertheless, in order to make chemistry a sustainable discipline, obtaining FAIR data is insufficient and a comprehensive concept that includes preservation of materials is needed. In order to offer a comprehensive infrastructure to find and access data and materials that were generated in chemistry projects, we combined the infrastructure Chemotion repository with an archive for chemical compounds. Samples play a key role in this concept: we describe how FAIR metadata of a virtual sample representation can be used to refer to a physically available sample in a materials’ archive and to link it with the FAIR research data gained using the said sample. We further describe the measures to make the physically available samples not only FAIR through their metadata but also findable, accessible and reusable.
Publikation
Hmedat, A.; Morejón, M.; Rivera, D.; Pantelić, N.; Wessjohann, L.; Kaluđerović, G. N.;In vitro anticancer studies of a small library of cyclic lipopeptides against the human cervix adenocarcinoma HeLa cellsJ. Serb. Chem. Soc.89471-484(2024)DOI: 10.2298/jsc240109018h
Various cyclic lipopeptides (CLPs, 23 compounds) were tested for their antitumor potential against human cervix adenocarcinoma HeLa cells. From the fast screening (tested concentrations: 0.01 and 10 μM) compound 10 ((12S,6S,10S,13S)-6-((R)-sec-butyl)-7-(2-(dodecylamino)-2-oxoethyl)-13-isopropyl- 82-nitro-2,5,12,15-tetraoxo-4,7,11,14-tetraaza-1(1,2)-pyrrolidina-8(1,4)-benzenacyclopentadecaphane- 10-carboxamide) was identified as active against HeLa cell line. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and CV (crystal violet) assays revealed at least five times higher cytotoxic potential of 10 (IC50 = 12.3±1.8 μM, MTT; 9.4±1.5 μM; CV) in comparison to control drug natural occurring CLP surfactin (IC50 = 64.9±0.8 μM, MTT; 76.2±1.6 μM; CV). The cell cycle analysis performed by DAPI (4\',6-diamidino- 2-phenylindole) assay indicated the involvement of apoptosis in HeLa cell death upon treatment with 10, which was confirmed by apoptosis assay (annexin V/PI). Furthermore, during this process caspase activation could be detected (ApoStat assay, immunocytochemistry caspase-3 analysis). The flow cytometry analysis did not display induction of autophagy as a possible death mechanism in HeLa cells upon 10 treatment. The current findings could be used to design more effective CLPs based on 10 structure as potential anticancer agents.
Publikation
Eichhorn, T.; Đošić, M.; Dimić, D.; Morgan, I.; Milenković, D.; Rennert, R.; Amić, A.; Marković, Z.; Kaluđerović, G. N.; Dimitrić Marković, J.;Ru(II)‐nitrophenylhydrazine/chlorophenylhydrazine complexes: Nanoarchitectonics, biological evaluation and in silico studyEur. J. Inorg. Chem.27e202300683(2024)DOI: 10.1002/ejic.202300683
Ru(II)‐arene compounds are being investigated as anticancer agents due to the biocompatibility of ruthenium and their structural diversity. Two newly synthesized Ru(II) complexes, [RuCl(η6‐p‐cymene)(3‐DNPH)] (chlorido(η6‐p‐cymene)(3‐nitrophenylhydrazine‐k2N,N′)ruthenium(II)) (1) and [RuCl(η6‐p‐cymene)(3‐CNPH)] (chlorido(3‐chlorophenylhydrazine‐k2N,N′)(η6‐p‐cymene)ruthenium(II)) (2), are experimentally (IR, NMR) and theoretically (B3LYP/6‐31+G(d,p)(H,C,N,Cl)/LanL2DZ(Ru)) characterized. Experimental and theoretical values of 1H and 13C chemical shifts and position of the most intense vibrational bands showed high correlation coefficients and low mean absolute errors, proving the predicted structure and applicability of the selected level of theory. Cell viability studies performed on MDA‐MB‐468, BT‐474, and PC3 cells using MTT and CV assay indicated the activity of the second complex similar to the activity of cisplatin towards BT‐474 breast cancer cells. The spectrofluorimetric measurements of Bovine Serum Albumin showed the binding process‘s spontaneity of complexes and protein, with a binding energy of around −30 kJ mol−1. Detailed molecular docking analysis allowed the elucidation of the binding mechanism through specific intermolecular interactions. Both compounds showed a higher affinity towards BSA than naproxen and cisplatin. Molecular docking simulations proved the spontaneity of the complexes binding to DNA. Based on these promising results, further biological examinations of these compounds are advised.Graphical Abstract
The cytotoxicity, protein binding affinity, interactions
with DNA, spectral and structural features of two new Ru(II) compounds,
[RuCl(η6-p-cymene)(3-DNPH)] chlorido(η6-p-cymene)(3-nitrophenylhydrazine-k2N,N′)ruthenium(II) and [RuCl(η6-p-cymene)(3-CNPH)] chlorido(3-chlorophenylhydrazine-k2N,N′)(η6-p-cymene)ruthenium(II), are examined experimentally and theoretically.
Publikation
Morgan, I.; Rennert, R.; Berger, R.; Jelača, S.; Maksimović-Ivanić, D.; Dunđerović, D.; Mijatović, S.; Kaluđerović, G. N.; Wessjohann, L. A.;The impact of 9-azaglycophymine and phenylguanidine derivatives on the proliferation of various breast cancer cell lines in vitro and in vivoSci. Rep.1428126(2024)DOI: 10.1038/s41598-024-71624-8
Quinazolinones, particularly 9-azaglycophymines, and closely related derivatives and precursors were tested in vitro against various breast cancer cell lines representing the major types of breast tumors. Among the 49 compounds tested, azaglycophymine derivative 19 with an electron-withdrawing substituent demonstrated the most significant anti-proliferative effects, with IC50 values of around 4 µM. Extensive cell-based investigations revealed that compound 19 induced caspase-dependent apoptosis in HCC1937 (human TNBC), BT-474 (human HER2+/HR+), and 4T1 (mouse TNBC) cells. In contrast, in MDA-MB-468 (human TNBC) and MCF-7 (human HR+) cells, the cell death was induced via a non-apoptotic pathway. The in vivo efficacy of compound 19 was validated using a syngeneic orthotopic 4T1 model in BALB/c mice, resulting in significant reduction of 4T1 breast tumor growth upon intraperitoneal (i.p.) application of doses of 5 or 20 mg/kg. These findings highlight the potential of compound 19 as a promising scaffold for the development of new therapeutic agents for various types of breast cancer and a first structure-activity insight.