Geschmack ist vorhersagbar: Mit FlavorMiner. FlavorMiner heißt das Tool, das IPB-Chemiker und Partner aus Kolumbien jüngst entwickelt haben. Das Programm kann, basierend auf maschinellem Lernen (KI), anhand der…
Seit Februar 2021 bietet Wolfgang Brandt, ehemaliger Leiter der Arbeitsgruppe Computerchemie am IPB, sein Citizen Science-Projekt zur Pilzbestimmung an. Dafür hat er in regelmäßigen Abständen öffentliche Vorträge zur Vielfalt…
A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). We combined metabolomics and machine learning to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate cancer cells (PC-3). As proof of concept, we studied 38 drugs with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. We validate the transferability of MoA predictions from PC-3 to two other cancer cell models and show that correct predictions are still possible, but at the expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, we predict that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as supported by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, our approach offers new opportunities, including the optimization of combinatorial drug applications.
Publikation
Grosskopf, A.; Rahn, J.; Kim, A.; Szabó, G.; Rujescu, D.; Klawonn, F.; Frolov, A.; Simm, A.;Peptide-bound glycative, AGE and oxidative modifications as biomarkers for the diagnosis of Alzheimer’s Disease—A Feasibility StudyBiomedicines122127(2024)DOI: 10.3390/biomedicines12092127
Background: The diagnosis of Alzheimer’s disease (AD) relies on core cerebrospinal fluid (CSF) biomarkers, amyloid beta (Aβ) and tau. As the brain is then already damaged, researchers still strive to discover earlier biomarkers of disease onset and the progression of AD. Glycation, advanced glycation end products (AGEs) and oxidative modifications on proteins in CSF mirror the underlying biological mechanisms that contribute to early AD pathology. However, analyzing free AGEs in the body fluids of AD patients has led to controversial results. Thus, this pilot study aimed to test the feasibility of detecting, identifying and quantifying differentially glycated, AGE or oxidatively modified peptides in CSF proteins of AD patients (n = 5) compared to a control group (n = 5). Methods: To this end, we utilized a data-dependent (DDA) nano liquid chromatography (LC) linear ion trap-Orbitrap tandem mass spectrometry (MS/MS) ) approach and database search that included over 30 glycative and oxidative modifications in four search nodes to analyze endogenous modifications on individual peptides. Furthermore, we quantified candidate peptide abundance using LC Quan. Results: We identified 299 sites of early and advanced glycation and 53 sites of oxidatively modified tryptophan. From those, we identified 17 promising candidates as putative biomarkers (receiver operating curve-area under the curve (ROC-AUC) > 0.8), albeit without statistical significance. Conclusions: The potential candidates with higher discrimination power showed correlations with established diagnostic markers, thus hinting toward the potential of those peptides as biomarkers.
Publikation
Frey, M.; Bathe, U.; Meink, L.; Balcke, G. U.; Schmidt, J.; Frolov, A.; Soboleva, A.; Hassanin, A.; Davari, M. D.; Frank, O.; Schlagbauer, V.; Dawid, C.; Tissier, A.;Combinatorial biosynthesis in yeast leads to over 200 diterpenoidsMetab. Eng.82193-200(2024)DOI: 10.1016/j.ymben.2024.02.006
Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyldiphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.
Publikation
Mamadalieva, N. Z.; Šoral, M.; Kysil, E.; Stark, P.; Frolov, A.; Wessjohann, L. A.;Comparative metabolic profiling and quantitative analysis of metabolites in different tissues of Ajuga turkestanica by ESI-UHPLC-QqTOF-MS and NMRSci. Rep.1428179(2024)DOI: 10.1038/s41598-024-71546-5
Ajuga turkestanica preparations are used as anti-aging cosmeceuticals and for medicinal purposes. Herein we describe the characterization and quantification of its metabolites in different organs using UHPLC-MS and NMR spectroscopy. A total of 51 compounds belonging to various phytochemical classes (11 flavonoids, 10 ecdysteroids, 9 diterpenes, 6 fatty acids, 5 iridoids, 3 phenylpropanoids, 3 sugars, 2 phenolics, 1 coumarin, 1 triterpene) were annotated and tentatively identified by UHPLC-ESI-QqTOF-MS/MS of methanolic extracts obtained separately from the organs. 1D and 2D NMR spectroscopy independently confirmed the identity of six major compounds. The abundances of these main constituents in flowers, fruits, leaves, roots, seeds, and stems were compared and quantified using 1H NMR. The results showed that 8-O-acetylharpagide, 20-hydroxyecdysone (ecdysterone) and ajugachin B were the most abundant constituents in the species. The two major compounds, 8-O-acetylharpagide and 20-hydroxyecdysone, were chosen as the markers for the quality assessment of A. turkestanica material. The methanolic extract of the aerial parts of A. turkestanica showed no noteworthy anthelmintic (antihelmintic), antifungal, or cytotoxic effect in in vitro assays.