- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The purpose of this study was to explore a series of Passerini reactions on a biocatalytically derived enantiopure azetidine-2-carboxyaldehyde in order to obtain, in a diastereoselective manner, polyfunctionalised derivatives having the potential to be cyclized to chiral bridged bicyclic nitrogen heterocycles. While diastereoselectivity was poor under classical Passerini conditions, a significant increase of diastereoselectivity (up to 76:24) was gained by the use of zinc bromide as promoter. The methodology has a broad scope and yields are always good.
Publikation
A novel catalytic property of penicillin G amidase (PGA) is described. Unexpectedly, the enzyme can hydrolyse hydrazide bonds with good efficiency, and in solution the enzyme shows a selectivity that is similar to phenylacetamides. The hydrolysis of phenylacetic hydrazides releases hydrazine, but no inhibition due to the formation of such reactive compounds was observed. This novel catalytic property was assayed also on a solid phase as a pioneering route for the design of enzyme‐cleavable linkers and masked scavengers for ketones. On a solid phase a phenylacetic hydrazide compound was chemically synthesised on PEGA1900 and PEGA+ (two co‐polymers of acrylamide and ethylene glycol) and the efficiency of PGA in the release of phenylacetic acid depended on the diffusion of the protein inside the polymer. On PEGA+ the enzyme, as previously described, shows a good diffusion due to an improved electrostatic interaction with PGA thus achieving good hydrolytic conversions.