- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The aminocoumarin antibiotic coumermycin A1 produced by Streptomyces rishiriensis DSM 40489 contains two amide bonds. The biosynthetic gene cluster of coumermycin contains a putative amide synthetase gene, couL , encoding a protein of 529 amino acids. CouL was overexpressed as hexahistidine fusion protein in Escherichia coli and purified by metal affinity chromatography, resulting in a nearly homogenous protein. CouL catalysed the formation of both amide bonds of coumermycin A1, i.e. between the central 3‐methylpyrrole‐2,4‐dicarboxylic acid and two aminocoumarin moieties. Gel exclusion chromatography showed that the enzyme is active as a monomer. The activity was strictly dependent on the presence of ATP and Mn2+ or Mg2+. The apparent K m values were determined as 26 µm for the 3‐methylpyrrole‐2,4‐dicarboxylic acid and 44 µm for the aminocoumarin moiety, respectively. Several analogues of the pyrrole dicarboxylic acid were accepted as substrates. In contrast, pyridine carboxylic acids were not accepted. 3‐Dimethylallyl‐4‐hydroxybenzoic acid, the acyl component in novobiocin biosynthesis, was well accepted, despite its structural difference from the genuine acyl substrate of CouL.