- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Preprints
Publikation
Bücher und Buchkapitel
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Preprints
The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by stably transforming a Cas9 expression construct into the plant genome. The efficiency with which mutations are obtained in genes of interest can vary considerably depending on specific features of the constructs, including the source and nature of the promoters and terminators used for expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency with which mutations could be obtained in target genes in Arabidopsis thaliana with the Cas9 nuclease, we have investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLS) and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on Cas9 activity and that two NLSs work better than one. However, the most important impact on the efficiency of the constructs was obtained by addition of 13 introns into the Cas9 coding sequence, which dramatically improved editing efficiencies of the constructs; none of the primary transformants obtained with a Cas9 lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of primary transformants generated with intronized Cas9 displayed mutant phenotypes. The intronized Cas9 was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.
Publikation
Methods that enable the construction of recombinant DNA molecules are essential tools for biological research and biotechnology. Golden Gate cloning is used for assembly of multiple DNA fragments in a defined linear order in a recipient vector using a one‐pot assembly procedure. Golden Gate cloning is based on the use of a type IIS restriction enzyme for digestion of the DNA fragments and vector. Because restriction sites for the type IIS enzyme used for assembly must be present at the ends of the DNA fragments and vector but absent from all internal sequences, special care must be taken to prepare DNA fragments and the recipient vector with a structure suitable for assembly by Golden Gate cloning. In this article, protocols are presented for preparation of DNA fragments, modules, and vectors suitable for Golden Gate assembly cloning. Additional protocols are presented for assembly of defined parts in a transcription unit, as well as the stitching together of multiple transcription units into multigene constructs by the modular cloning (MoClo) pipeline.
Bücher und Buchkapitel
Availability of efficient DNA assembly methods is a basic requirement for synthetic biology. A variety of modular cloning systems have been developed, based on Golden Gate cloning for DNA assembly, to enable users to assemble multigene constructs from libraries of standard parts using a series of successive one-pot assembly reactions. Standard parts contain the DNA sequence coding for a genetic element of interest such as a promoter, coding sequence or terminator. Standard parts for the modular cloning system MoClo must be flanked by two BsaI restriction sites and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of basic parts. This protocol requires the following steps (1) defining the type of basic part that needs to be cloned, (2) designing primers for amplification, (3) performing PCR amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large basic parts, it is preferable to first clone subparts as intermediate level −1 constructs. These subparts are sequenced individually and are then further assembled to make the final level 0 module.