Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T. M. D.; Foguet, C.; Glen, R.; Gonzalez-Beltran, A.; Günther, U. L.; Handakas, E.; Hankemeier, T.; Haug, K.; Herman, S.; Holub, P.; Izzo, M.; Jacob, D.; Johnson, D.; Jourdan, F.; Kale, N.; Karaman, I.; Khalili, B.; Emami Khoonsari, P.; Kultima, K.; Lampa, S.; Larsson, A.; Ludwig, C.; Moreno, P.; Neumann, S.; Novella, J. A.; O'Donovan, C.; Pearce, J. T. M.; Peluso, A.; Piras, M. E.; Pireddu, L.; Reed, M. A. C.; Rocca-Serra, P.; Roger, P.; Rosato, A.; Rueedi, R.; Ruttkies, C.; Sadawi, N.; Salek, R. M.; Sansone, S.-A.; Selivanov, V.; Spjuth, O.; Schober, D.; Thévenot, E. A.; Tomasoni, M.; van Rijswijk, M.; van Vliet, M.; Viant, M. R.; Weber, R. J. M.; Zanetti, G.; Steinbeck, C.;PhenoMeNal: processing and analysis of metabolomics data in the cloudGigaScience8giy149(2019)DOI: 10.1093/gigascience/giy149
BackgroundMetabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution.FindingsPhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm.ConclusionsPhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Preprints
Peters, K.; Bradbury, J.; Bergmann, S.; Capuccini, M.; Cascante, M.; de Atauri, P.; Ebbels, T. M. D.; Foguet, C.; Glen, R.; Gonzalez-Beltran, A.; Guenther, U.; Handakas, E.; Hankemeier, T.; Haug, K.; Herman, S.; Holub, P.; Izzo, M.; Jacob, D.; Johnson, D.; Jourdan, F.; Kale, N.; Karaman, I.; Khalili, B.; Emami Khoonsari, P.; Kultima, K.; Lampa, S.; Larsson, A.; Ludwig, C.; Moreno, P.; Neumann, S.; Novella, J. A.; O'Donovan, C.; Pearce, J. T. M.; Peluso, A.; Pireddu, L.; Piras, M. E.; Reed, M. A. C.; Rocca-Serra, P.; Roger, P.; Rosato, A.; Rueedi, R.; Ruttkies, C.; Sadawi, N.; Salek, R.; Sansone, S.-A.; Selivanov, V.; Spjuth, O.; Schober, D.; Thévenot, E. A.; Tomasoni, M.; van Rijswijk, M.; van Vliet, M.; Viant, M. R.; Weber, R. J. M.; Zanetti, G.; Steinbeck, C.;PhenoMeNal: Processing and analysis of Metabolomics data in the CloudbioRxiv(2018)DOI: 10.1101/409151
Background Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological and many other applied biological domains. Its computationally-intensive nature has driven requirements for open data formats, data repositories and data analysis tools. However, the rapid progress has resulted in a mosaic of independent – and sometimes incompatible – analysis methods that are difficult to connect into a useful and complete data analysis solution.Findings The PhenoMeNal (Phenome and Metabolome aNalysis) e-infrastructure provides a complete, workflow-oriented, interoperable metabolomics data analysis solution for a modern infrastructure-as-a-service (IaaS) cloud platform. PhenoMeNal seamlessly integrates a wide array of existing open source tools which are tested and packaged as Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi and Pachyderm.Conclusions PhenoMeNal constitutes a keystone solution in cloud infrastructures available for metabolomics. It provides scientists with a ready-to-use, workflow-driven, reproducible and shareable data analysis platform harmonizing the software installation and configuration through user-friendly web interfaces. The deployed cloud environments can be dynamically scaled to enable large-scale analyses which are interfaced through standard data formats, versioned, and have been tested for reproducibility and interoperability. The flexible implementation of PhenoMeNal allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Publikation
Schober, D.; Jacob, D.; Wilson, M.; Cruz, J. A.; Marcu, A.; Grant, J. R.; Moing, A.; Deborde, C.; de Figueiredo, L. F.; Haug, K.; Rocca-Serra, P.; Easton, J.; Ebbels, T. M. D.; Hao, J.; Ludwig, C.; Günther, U. L.; Rosato, A.; Klein, M. S.; Lewis, I. A.; Luchinat, C.; Jones, A. R.; Grauslys, A.; Larralde, M.; Yokochi, M.; Kobayashi, N.; Porzel, A.; Griffin, J. L.; Viant, M. R.; Wishart, D. S.; Steinbeck, C.; Salek, R. M.; Neumann, S.;nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR DataAnal. Chem.90649-656(2018)DOI: 10.1021/acs.analchem.7b02795
NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.
Publikation
van Rijswijk, M.; Beirnaert, C.; Caron, C.; Cascante, M.; Dominguez, V.; Dunn, W. B.; Ebbels, T. M. D.; Giacomoni, F.; Gonzalez-Beltran, A.; Hankemeier, T.; Haug, K.; Izquierdo-Garcia, J. L.; Jimenez, R. C.; Jourdan, F.; Kale, N.; Klapa, M. I.; Kohlbacher, O.; Koort, K.; Kultima, K.; Le Corguillé, G.; Moreno, P.; Moschonas, N. K.; Neumann, S.; O’Donovan, C.; Reczko, M.; Rocca-Serra, P.; Rosato, A.; Salek, R. M.; Sansone, S.-A.; Satagopam, V.; Schober, D.; Shimmo, R.; Spicer, R. A.; Spjuth, O.; Thévenot, E. A.; Viant, M. R.; Weber, R. J. M.; Willighagen, E. L.; Zanetti, G.; Steinbeck, C.;The future of metabolomics in ELIXIRF1000Research61649(2017)DOI: 10.12688/f1000research.12342.2
Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.
Publikation
Salek, R. M.; Neumann, S.; Schober, D.; Hummel, J.; Billiau, K.; Kopka, J.; Correa, E.; Reijmers, T.; Rosato, A.; Tenori, L.; Turano, P.; Marin, S.; Deborde, C.; Jacob, D.; Rolin, D.; Dartigues, B.; Conesa, P.; Haug, K.; Rocca-Serra, P.; O’Hagan, S.; Hao, J.; van Vliet, M.; Sysi-Aho, M.; Ludwig, C.; Bouwman, J.; Cascante, M.; Ebbels, T.; Griffin, J. L.; Moing, A.; Nikolski, M.; Oresic, M.; Sansone, S.-A.; Viant, M. R.; Goodacre, R.; Günther, U. L.; Hankemeier, T.; Luchinat, C.; Walther, D.; Steinbeck, C.;Erratum to: COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data accessMetabolomics111598-1599(2015)DOI: 10.1007/s11306-015-0822-7
Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative ‘coordination of standards in metabolomics’ (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities’ participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards.