- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Preprints
Preprints
Preprints
Preprints
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Preprints
In plant-pathogen interactions, components of the plant ubiquitination machinery are preferred targets of pathogen-encoded effectors suppressing defense responses or co-opting host cellular functions for accommodation. Here, we employed transient and stable gene silencing-and over-expression systems in Hordeum vulgare (barley) to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). The partial ARM1 gene was derived from an ancient gene-duplication event in a common ancestor of the Triticeae tribe of grasses comprising the major crop species H. vulgare, Triticum aestivum and Secale cereale. The barley gene HvARM1 contributed to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis, and allelic variants were found to be associated with powdery mildew-disease severity. Both HvPUB15 and HvARM1 proteins interacted in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. The results suggest a neo-functionalization HvARM1 to increase resistance against powdery mildew and provide a link to plastid function in susceptibility to biotrophic pathogen attack.
Preprints
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. This combinatorial assembly strategy meets the increasingly complex demands in biotechnology and bioengineering, and also represents a cost-efficient and versatile alternative to previous molecular cloning techniques. For Modular Cloning, a collection of commonly used Plant Parts was previously released together with the Modular Cloning toolkit itself, which largely facilitated the adoption of this cloning system in the research community. Here, a collection of approximately 80 additional phytobricks is provided. These phytobricks comprise e.g. modules for inducible expression systems, different promoters or epitope tags, which will increase the versatility of Modular Cloning-based DNA assemblies. Furthermore, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. Additionally, DNA modules and assembly strategies for connecting Modular Cloning with Gateway Cloning are presented, which may serve as an interface between available resources and newly adopted hierarchical assembly strategies. The presented material will be provided as a toolkit to the plant research community and will further enhance the usefulness and versatility of Modular Cloning.
Preprints
Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed in parallel using the Kubernetes container orchestrator. The access point is a virtual research environment which can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and established workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry studies, one nuclear magnetic resonance spectroscopy study and one fluxomics study, showing that the method scales dynamically with increasing availability of computational resources. We achieved a complete integration of the major software suites resulting in the first turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, multivariate statistics, and metabolite identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science.
Preprints
The activity and abundance of proteins within a cell are controlled precisely to ensure the regulation of cellular and physiological processes. In eukaryotes, this can be achieved by targeting specific proteins for degradation by the ubiquitinproteasome system. The N-end rule pathway, a subset of the ubiquitinproteasome system, targets proteins for degradation depending on the identity of a protein N-terminal residue or its post-translational modifications. Here, we discuss the most recent findings on the diversity of N-end rule pathways. We also focus on recently found defensive functions of the N-end rule pathway in plants. We then discuss the current understanding of N-end rule substrate formation by protease cleavage. Finally, we review state-of-the-art proteomics techniques used for N-end rule substrate identification, and discuss their usefulness and limitations for the discovery of the molecular mechanisms underlying the roles of the N-end rule pathway in plants.
Publikation
Glycation is a post-translational modification resulting from the interaction of protein amino and guanidino groups with carbonyl compounds. Initially, amino groups react with reducing carbohydrates, yielding Amadori and Heyns compounds. Their further degradation results in formation of advanced glycation end products (AGEs), also originating from α-dicarbonyl products of monosaccharide autoxidation and primary metabolism. In mammals, AGEs are continuously formed during the life of the organism, accumulate in tissues, are well-known markers of aging, and impact age-related tissue stiffening and atherosclerotic changes. However, the role of AGEs in age-related molecular alterations in plants is still unknown. To fill this gap, we present here a comprehensive study of the age-related changes in the Arabidopsis thaliana glycated proteome, including the proteins affected and specific glycation sites therein. We also consider the qualitative and quantitative changes in glycation patterns in terms of the general metabolic background, pathways of AGE formation, and the status of plant anti-oxidative/anti-glycative defense. Although the patterns of glycated proteins were only minimally influenced by plant age, the abundance of 96 AGE sites in 71 proteins was significantly affected in an age-dependent manner and clearly indicated the existence of age-related glycation hot spots in the plant proteome. Homology modeling revealed glutamyl and aspartyl residues in close proximity (less than 5 Å) to these sites in three aging-specific and eight differentially glycated proteins, four of which were modified in catalytic domains. Thus, the sites of glycation hot spots might be defined by protein structure that indicates, at least partly, site-specific character of glycation.
Publikation
Apocynaceae is a botanical family distributed mainly in tropical and subtropical regions of the world. In Brazil, they comprise about 90 genera and 850 species, inhabiting various types of vegetation. Within this large botanical family, the genus Hancornia is considered monotypic, with its only species Hancornia speciosa Gomes. Antihypertensive, antidiabetic, and antiviral activities are described for this species. Despite having been the target of some studies, knowledge of its chemical composition is still limited. In this study, the phenolics of H. speciosa leaves were analyzed using ultra-high performance liquid chromatography (UHPLC) coupled to Orbitrap high-resolution mass spectrometry (HRMS). As a result, 14 compounds were identified viz. protocatechuic acid, catechin, and quercetin, and another 14 were putatively identified viz. B- and C-type procyanidins, while just one compound remained unknown. From the identified compounds, 17 are reported for the first time viz. coumaroylquinic acid isomers and eriodyctiol. The results show that Hancornia speciosa can serve as source of valuable phenolics.
Publikation
Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1–ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.
Publikation
Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2. Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity.
Publikation
The hydrodistilled essential oil obtained from the dried leaves of Myrtus communis, collected in Yemen, was analysed by GC–MS. Forty-one compounds were identified, representing 96.3% of the total oil. The major constituents of essential oil were oxygenated monoterpenoids (87.1%), linalool (29.1%), 1,8-cineole (18.4%), α-terpineol (10.8%), geraniol (7.3%) and linalyl acetate (7.4%). The essential oil was assessed for its antimicrobial activity using a disc diffusion assay and resulted in moderate to potent antibacterial and antifungal activities targeting mainly Bacillus subtilis, Staphylococcus aureus and Candida albicans. The oil moderately reduced the diphenylpicrylhydrazyl radical (IC50 = 4.2 μL/mL or 4.1 mg/mL). In vitro cytotoxicity evaluation against HT29 (human colonic adenocarcinoma cells) showed that the essential oil exhibited a moderate antitumor effect with IC50 of 110 ± 4 μg/mL. Hierarchical cluster analysis of M. communis has been carried out based on the chemical compositions of 99 samples reported in the literature, including Yemeni sample.
Publikation
Chirita drakei Burtt (now accepted as Primulina drakei (B.L.Burtt) Mich.Möller & A.Weber) is growing on limestone mountain slopes of Ha Long Bay islands in Vietnam. The chemical investigation of the aerial parts of C. drakei led to the isolation and structural elucidation of two new compounds named chiridrakoside A (1) and chiridrakoside B (2) besides twelve known compounds comprising five phenylethanoid glycosides (3–7), two lignans (8, 9), a phenyl propanoid (10), an anthraquinone (11), a furan derivative (12) and two triterpenes (13, 14). All described compounds, except 4, 5 and 11, were obtained for the first time from the genera Chirita or Primulina. The cytotoxic activity of the isolated compounds was evaluated against the four human cancer cell lines KB (mouth epidermal carcinoma), HepG2 (hepatocellular carcinoma), Lu (lung carcinoma) and MCF7 (breast carcinoma). Epoxyconiferyl alcohol (10) exhibited cytotoxic activity against the tested cell lines (IC50 from 46 to 128 μM).