- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Preprints
Preprints
Preprints
Preprints
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Preprints
In plant-pathogen interactions, components of the plant ubiquitination machinery are preferred targets of pathogen-encoded effectors suppressing defense responses or co-opting host cellular functions for accommodation. Here, we employed transient and stable gene silencing-and over-expression systems in Hordeum vulgare (barley) to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). The partial ARM1 gene was derived from an ancient gene-duplication event in a common ancestor of the Triticeae tribe of grasses comprising the major crop species H. vulgare, Triticum aestivum and Secale cereale. The barley gene HvARM1 contributed to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis, and allelic variants were found to be associated with powdery mildew-disease severity. Both HvPUB15 and HvARM1 proteins interacted in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. The results suggest a neo-functionalization HvARM1 to increase resistance against powdery mildew and provide a link to plastid function in susceptibility to biotrophic pathogen attack.
Preprints
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. This combinatorial assembly strategy meets the increasingly complex demands in biotechnology and bioengineering, and also represents a cost-efficient and versatile alternative to previous molecular cloning techniques. For Modular Cloning, a collection of commonly used Plant Parts was previously released together with the Modular Cloning toolkit itself, which largely facilitated the adoption of this cloning system in the research community. Here, a collection of approximately 80 additional phytobricks is provided. These phytobricks comprise e.g. modules for inducible expression systems, different promoters or epitope tags, which will increase the versatility of Modular Cloning-based DNA assemblies. Furthermore, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. Additionally, DNA modules and assembly strategies for connecting Modular Cloning with Gateway Cloning are presented, which may serve as an interface between available resources and newly adopted hierarchical assembly strategies. The presented material will be provided as a toolkit to the plant research community and will further enhance the usefulness and versatility of Modular Cloning.
Preprints
Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed in parallel using the Kubernetes container orchestrator. The access point is a virtual research environment which can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and established workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry studies, one nuclear magnetic resonance spectroscopy study and one fluxomics study, showing that the method scales dynamically with increasing availability of computational resources. We achieved a complete integration of the major software suites resulting in the first turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, multivariate statistics, and metabolite identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science.
Preprints
The activity and abundance of proteins within a cell are controlled precisely to ensure the regulation of cellular and physiological processes. In eukaryotes, this can be achieved by targeting specific proteins for degradation by the ubiquitinproteasome system. The N-end rule pathway, a subset of the ubiquitinproteasome system, targets proteins for degradation depending on the identity of a protein N-terminal residue or its post-translational modifications. Here, we discuss the most recent findings on the diversity of N-end rule pathways. We also focus on recently found defensive functions of the N-end rule pathway in plants. We then discuss the current understanding of N-end rule substrate formation by protease cleavage. Finally, we review state-of-the-art proteomics techniques used for N-end rule substrate identification, and discuss their usefulness and limitations for the discovery of the molecular mechanisms underlying the roles of the N-end rule pathway in plants.
Publikation
Aims: Platinum(II) and platinum(IV) complexes [PtCln{(S,S)-(i-Am)2eddip}] (n = 2, 4: 1, 2, respectively; (S,S)-(i-Am)2eddip = O,O’-diisoamyl-(S,S)-ethylenediamine-N,N’-di-2-propanoate) were synthesized and characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy and mass spectrometry.Method: Quantum chemical calculations were used to predict formed isomers of 1 and 2. Furthermore, reduction of 2 with ascorbic acid was followed by time-dependant 13C NMR spectroscopy in order to enable assignation of the formed isomers for complex 1. In vitro cytotoxic activity was determined for 1 and 2 on a panel of five human tumor cell lines derived from cervix adenocarcinoma (HeLa), alveolar basal adenocarcinoma (A549), breast adenocarcinoma (MDA-453), colorectal cancer (LS 174), erythromyeloblastoid leukemia (K562), as well as one non-malignant human lung fibroblast cell line (MRC-5), using MTT assay. Result: Both complexes exhibited high (2 against K562: IC50 = 5.4 μM), more active than cisplatin, to moderate activity (1). Both complexes caused considerable decrease of cell number in K562 cells in G1, S and G2 phases, concordantly increasing subpopulation in sub-G1 fraction. Morphological analysis of K562 cell death induced by platinum(II/IV) complexes indicate apoptosis.
Publikation
The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and mutants deficient in the expression of ABCG36 (PDR8/PEN3), ABCG37 (PDR9) or both transporters. Comparison of the metabolite profiles indicated distinct roles for each ABC transporter in root exudation. Thymidine exudation could be attributed to ABCG36 function, whereas coumarin exudation was strongly reduced only in ABCG37 deficient plants. However, coumarin exudation was compromised in abcg37 mutants only with respect to certain metabolites of this substance class. The specificity of ABCG37 for individual coumarins was further verified by a targeted LC-MS based coumarin profiling method. The response to iron deficiency, which is known to strongly induce coumarin exudation, was also investigated. In either treatment, the distribution of individual coumarins between roots and exudates in the investigated genotypes suggested the involvement of ABCG37 in the exudation specifically of highly oxygenated rather than monohydroxylated coumarins.
Publikation
AimsPlant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB.MethodsEighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656T. Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates.ResultsInoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation.ConclusionsThe plant genotype controls the bacterial growth promoting traits. Levels of lutein and β-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with β-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that β-carotene could be a positive regulator of plant growth promotion.
Publikation
Background:Ocimum forskolei and Teucrium yemense (Lamiaceae) are used in traditional medicine in Yemen. Methods: The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Ocimum forskolei Benth. (EOOF) and two different populations of Teucrium yemense Deflers., one collected from Dhamar province (EOTY-d), and another collected from Taiz (EOTY-t) were investigated. The antimicrobial activities of the oils were evaluated against several microorganisms with the disc diffusion test or the broth microdilution test. The essential oils were screened for in-vitro cytotoxic activity against human tumor cells. EOOF and EOTY-d were screened for free-radical-inhibitory activity using the DPPH radical scavenging assay. Results: Sixty-four compounds were identified in (EOOF) representing 100% of the oil content with endo-fenchol (31.1%), fenchone (12.2%), τ-cadinol (12.2%), and methyl (E)-cinnamate (5.1%) as the major compounds. In EOTY-d, 67 compounds were identified, which made up 91% of the total oil. The most abundant constituents were (E)-caryophyllene (11.2%), α-humulene (4.0.%), γ-selinene (5.5%), 7-epi-α-selinene (20.1%), and caryophyllene oxide (20.1%), while the major compounds in EOTY-t were α-pinene (6.6%), (E)-caryophyllene (19.1%) α-humulene (6.4%), δ-cadinene (6.5%), caryophyllene oxide (4.3%), α-cadinol (9.5%), and shyobunol (4.6%). The most sensitive microorganisms for EOOF were B. subtilis, S. aureus, and C. albicans with inhibition zones of 34, 16, and 24 mm and MIC values of, 4.3 mg/mL, 4.3 mg/mL, and 8.6 mg/mL, respectively. EOTY-t showed antimicrobial activity against S. aureus, B. cereus, A. niger, and B. cinerea with MIC values of 0.156, 0.156, 0.313 and 0.313 mg/mL, respectively. Neither essential oil showed remarkable radical inhibition (IC50 = 31.55 and 31.41 μL/mL). EOTY-d was active against HT-29 human colorectal adenocarcinoma cell lines with IC50 = 43.7 μg/mL. Consistent with this, EOTY-t was active against both MCF-7 and MDA-MB-231 human breast adenocarcinoma cells. Conclusions: The antimicrobial activity of Ocimum forskolei essential oil against B. subtilis and C. albicans is consistent with its traditional use in Yemeni traditional medicine to treat skin infections. Both O. forskolei and T. yemense show wide variations in their respective essential oil compositions; there remains a need to investigate both species botanically, genetically, and phytochemically more comprehensively.
Publikation
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Publikation
We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.