- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system\'s adaptions to low‐oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE‐RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, as erfVII seedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII‐driven counteraction of hypoxia‐induced inhibition of LR formation in an ABA‐dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA‐degrading ABA 8′‐hydroxylases CYP707A1 expression. RAP2.12 could activate the pCYC707A1:LUC reporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia‐induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII‐dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.
Publikation
Chemical investigation of the aerial parts of Astragalus lehmannianus Bunge (Leguminosae) led to the isolation and identification of a new cycloartane triterpene glycoside – lehmanniaside (2\'-O-acetyl-3-β-O-D-xylopyranosyl-3β,6α,16β,24α-tetrahydroxy-20,25-epoxycycloartane). Its structure was elucidated by means of spectroscopic analysis (HR-MS, 1D and 2D NMR). Bioassays showed that lehmanniaside exhibits weak anthelmintic, antifungal, and cytotoxic activities.
Publikation
Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored Hypericum species, a previously undescribed atropisomeric C8-C8’ linked dimeric coumarin named bichromonol (1) was isolated from the stem bark of Hypericum roeperianum. The structure was elucidated by MS data and NMR spectroscopy. The absolute configuration at the biaryl axis was determined by comparing the experimental ECD spectrum with those calculated for the respective atropisomers. Bichromonol was tested in cell-based assays for cytotoxicity against MT-4 (CC50 ¼ 54 mM) cells and anti-HIV activity in infected MT-4 cells. It exhibits significant activity at EC50 ¼ 6.6–12.0 mM against HIV-1 wild type and its clinically relevant mutant strains. Especially, against the resistant variants A17 and EFVR, bichromonol is more effective than the commercial drug nevirapine and might thus have potential to serve as a new anti-HIV lead.
Publikation
Arbuscular mycorrhizal (AM) symbiosis modulates plant‐herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore‐triggered phosphate (Pi)‐ and jasmonate (JA)‐related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi‐uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore‐triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi‐uptake pathway in the plant\'s response to herbivory, we used the mutant line ha1‐2, impaired in the H+‐ATPase gene HA1, which is essential for Pi‐uptake via the mycorrhizal pathway. We found that mycorrhiza‐triggered enhancement of herbivore performance was compromised in ha1‐2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi‐uptake pathway is involved in the modulation of the plant defence strategy.
Publikation
An extensive phytochemical study of a foliose lichen from Indonesia, Parmelia cetrata, resulted in the successful isolation of 13 phenol and depside derivatives (1–13) including the previously unreported depsides 3′-hydroxyl-5′-pentylphenyl 2,4-dihydroxyl-6-methylbenzoate (7), 3′-hydroxyl-5′-propylphenyl 2,4-dihydroxyl-6-methylbenzoate (8) and 3′-hydroxyl-5′-methylphenyl 2-hydroxyl-4-methoxyl-6-propylbenzoate (9). The anti-infective activity of isolated compounds was evaluated against the gram-negative bacterium Aliivibrio fischeri and the nematode Caenorhabditis elegans. 2,4-Dihydroxyl-6-pentylbenzoate (5) and lecanoric acid (6) induced growth inhibition of A. fischeri with inhibition values of 49% and 100% at a concentration of 100 µM, respectively. The antibacterial activity might be due to their free carboxyl group. A phenolic group at C4 also contributed to the antimicrobial activity of the depsides as shown for compounds 7 and 8, which caused 89% and 96% growth inhibition at 100 µM, respectively. Lecanoric acid (6) in addition possesses significant anthelmintic effects causing 80% mortality of C. elegans at 100 µg/mL.
Publikation
The chemical investigation of the root barks leaves and stem barks of Brucea antidysenterica J. F. Mill. (Simaroubaceae) led to the isolation of a new pregnane glycoside, named Bruceadysentoside A or 3-O-β-L-arabinopyranosyl-pregn-5-en-20-one (1) together with seventeen known compounds. Their structures were established from spectral data, mainly HRESIMS, 1 D and 2 D NMR and by comparison with literature data. Compounds 1, 2, 5, 6, 8, 10, 12 and 13 were tested in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. No substantial activities were recorded for 2, 10, 12 and 13 (up to 10 μM concentration). 1, 5 and 8 did not show strong anti-proliferative effects up to 100 μM, however, 6 exhibited a stronger anti-proliferative effect with IC50 values of ∼ 100 μM against PC-3 and ∼ 200 μM against HT-29.
Publikation
A series of new 11-keto-β-boswellic acid were partially-synthesized by modifying the hydroxyl and carboxylic acid functional groups of ring A. The structures of the new analogs were confirmed by detailed spectral data analysis. Compounds 4, 5 and 9 exhibited potent anti-cancer results against two human tumor cancer cell lines having IC50 value of MCF-7 (breast) and LNCaP (prostate): 123.6, 9.6 and 88.94 μM and 9.6, 44.12 and 12.03 μM, respectively. Additionally, a maximum nuclear fragmentation was observed for 4 (78.44%) in AKBA treated cells after 24 hr followed by 5 and 9 with (74.25 and 66.9% respectively). This study suggests that the presence of hydrazone functionality (4 and 9) has effectively improved the potency of AKBA. Interestingly, compound 5 with a lost carboxylic acid group of ring A showed comparable potent activity. Highly selective AKBA requires further modification to improve its bioavailability and solubility inside the cancer cells.
Publikation
Downy mildew in hop (Humulus lupulus L.) is caused by Pseudoperonospora humuli and generates significant losses in quality and yield. To identify the biochemical processes that confer natural downy mildew resistance (DMR), a metabolome- and genomewide association study was performed. Inoculation of a high density genotyped F1 hop population (n = 192) with the obligate biotrophic oomycete P. humuli led to variation in both the levels of thousands of specialized metabolites and DMR. We observed that metabolites of almost all major phytochemical classes were induced 48 hr after inoculation. But only a small number of metabolites were found to be correlated with DMR and these were enriched with phenylpropanoids. These metabolites were also correlated with DMR when measured from the non-infected control set. A genome-wide association study revealed co-localization of the major DMR loci and the phenylpropanoid pathway markers indicating that the major contribution to resistance is mediated by these metabolites in a heritable manner. The application of three putative prophylactic phenylpropanoids led to a reduced degree of leaf infection in susceptible genotypes, confirming their protective activity either directly or as precursors of active compounds.
Publikation
In the current investigation, a series of heterocyclic derivatives of boswellic acids were prepared along with new monomers of 3-O-acetyl-11-keto-β-boswellic acid (AKBA, 1) 11-keto-β-boswellic acid (KBA, 2) and several new bis-AKBA and KBA homodimers and AKBA-KBA heterodimers. The effects of these compounds on the proliferation of different human cancer cell lines, viz., FaDu (pharynx carcinoma), A2780 (ovarian carcinoma), HT29 (colon adenocarcinoma), and A375 (malignant melanoma), have been evaluated. Thus, KBA homodimer 21 effectively inhibited the growth of FaDu, A2780, HT29, and A375 cells with EC50 values below 9 μM. In addition, compounds 7, 8, 11, 12, 15, 16, and 17 also exhibited cytotoxic effects for A2780, HT29, and A375 cancer cells. In particular, the pyrazine analog 8 was highly cytotoxic for A375 cancer cells with an EC50 value of 2.1 μM.
Publikation
The hydrodistilled essential oil obtained from the dried leaves of Myrtus communis, collected in Yemen, was analysed by GC–MS. Forty-one compounds were identified, representing 96.3% of the total oil. The major constituents of essential oil were oxygenated monoterpenoids (87.1%), linalool (29.1%), 1,8-cineole (18.4%), α-terpineol (10.8%), geraniol (7.3%) and linalyl acetate (7.4%). The essential oil was assessed for its antimicrobial activity using a disc diffusion assay and resulted in moderate to potent antibacterial and antifungal activities targeting mainly Bacillus subtilis, Staphylococcus aureus and Candida albicans. The oil moderately reduced the diphenylpicrylhydrazyl radical (IC50 = 4.2 μL/mL or 4.1 mg/mL). In vitro cytotoxicity evaluation against HT29 (human colonic adenocarcinoma cells) showed that the essential oil exhibited a moderate antitumor effect with IC50 of 110 ± 4 μg/mL. Hierarchical cluster analysis of M. communis has been carried out based on the chemical compositions of 99 samples reported in the literature, including Yemeni sample.