- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Publikation
Chemical investigation of the aerial parts of Astragalus lehmannianus Bunge (Leguminosae) led to the isolation and identification of a new cycloartane triterpene glycoside – lehmanniaside (2\'-O-acetyl-3-β-O-D-xylopyranosyl-3β,6α,16β,24α-tetrahydroxy-20,25-epoxycycloartane). Its structure was elucidated by means of spectroscopic analysis (HR-MS, 1D and 2D NMR). Bioassays showed that lehmanniaside exhibits weak anthelmintic, antifungal, and cytotoxic activities.
Publikation
Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored Hypericum species, a previously undescribed atropisomeric C8-C8’ linked dimeric coumarin named bichromonol (1) was isolated from the stem bark of Hypericum roeperianum. The structure was elucidated by MS data and NMR spectroscopy. The absolute configuration at the biaryl axis was determined by comparing the experimental ECD spectrum with those calculated for the respective atropisomers. Bichromonol was tested in cell-based assays for cytotoxicity against MT-4 (CC50 ¼ 54 mM) cells and anti-HIV activity in infected MT-4 cells. It exhibits significant activity at EC50 ¼ 6.6–12.0 mM against HIV-1 wild type and its clinically relevant mutant strains. Especially, against the resistant variants A17 and EFVR, bichromonol is more effective than the commercial drug nevirapine and might thus have potential to serve as a new anti-HIV lead.
Publikation
An extensive phytochemical study of a foliose lichen from Indonesia, Parmelia cetrata, resulted in the successful isolation of 13 phenol and depside derivatives (1–13) including the previously unreported depsides 3′-hydroxyl-5′-pentylphenyl 2,4-dihydroxyl-6-methylbenzoate (7), 3′-hydroxyl-5′-propylphenyl 2,4-dihydroxyl-6-methylbenzoate (8) and 3′-hydroxyl-5′-methylphenyl 2-hydroxyl-4-methoxyl-6-propylbenzoate (9). The anti-infective activity of isolated compounds was evaluated against the gram-negative bacterium Aliivibrio fischeri and the nematode Caenorhabditis elegans. 2,4-Dihydroxyl-6-pentylbenzoate (5) and lecanoric acid (6) induced growth inhibition of A. fischeri with inhibition values of 49% and 100% at a concentration of 100 µM, respectively. The antibacterial activity might be due to their free carboxyl group. A phenolic group at C4 also contributed to the antimicrobial activity of the depsides as shown for compounds 7 and 8, which caused 89% and 96% growth inhibition at 100 µM, respectively. Lecanoric acid (6) in addition possesses significant anthelmintic effects causing 80% mortality of C. elegans at 100 µg/mL.
Publikation
The chemical investigation of the root barks leaves and stem barks of Brucea antidysenterica J. F. Mill. (Simaroubaceae) led to the isolation of a new pregnane glycoside, named Bruceadysentoside A or 3-O-β-L-arabinopyranosyl-pregn-5-en-20-one (1) together with seventeen known compounds. Their structures were established from spectral data, mainly HRESIMS, 1 D and 2 D NMR and by comparison with literature data. Compounds 1, 2, 5, 6, 8, 10, 12 and 13 were tested in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. No substantial activities were recorded for 2, 10, 12 and 13 (up to 10 μM concentration). 1, 5 and 8 did not show strong anti-proliferative effects up to 100 μM, however, 6 exhibited a stronger anti-proliferative effect with IC50 values of ∼ 100 μM against PC-3 and ∼ 200 μM against HT-29.
Publikation
Abstract The comparison of transcriptome time-courses of the first 2 h of the cold or highlight response of 24 h cold primed and naive Arabidopsis thaliana showed that priming quickly modifies gene expression in a trigger-specific manner. It dampened up- as well as down-regulation of genes in the cold and in the light. 1/3 of the priming-regulated genes were jasmonate sensitive, including the full set of genes required for oxylipin biosynthesis. qPCR-based analysis in wildtype plants and mutants demonstrated that OPDA (12-oxo phytenoic acid) biosynthesis relative to the jasmonic acid (JA) availability controls dampening of the genes for oxylipin biosynthetic enzymes: Gene regulation in oxylipin biosynthesis mutants more strongly depended on the biosynthesis of the JA precursor OPDA than on its conversion to JA. Additionally, priming-dependent dampening during triggering was more linked to OPDA than to JA level regulation and spray application of OPDA prior to triggering counteracted gene dampening. In contrast to cold-priming induced dampening of ZAT10, priming regulation of the oxylipin hub was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase and mediated by modulation of the oxylipin sensitivity of genes for OPDA biosynthesis.
Publikation
A series of new 11-keto-β-boswellic acid were partially-synthesized by modifying the hydroxyl and carboxylic acid functional groups of ring A. The structures of the new analogs were confirmed by detailed spectral data analysis. Compounds 4, 5 and 9 exhibited potent anti-cancer results against two human tumor cancer cell lines having IC50 value of MCF-7 (breast) and LNCaP (prostate): 123.6, 9.6 and 88.94 μM and 9.6, 44.12 and 12.03 μM, respectively. Additionally, a maximum nuclear fragmentation was observed for 4 (78.44%) in AKBA treated cells after 24 hr followed by 5 and 9 with (74.25 and 66.9% respectively). This study suggests that the presence of hydrazone functionality (4 and 9) has effectively improved the potency of AKBA. Interestingly, compound 5 with a lost carboxylic acid group of ring A showed comparable potent activity. Highly selective AKBA requires further modification to improve its bioavailability and solubility inside the cancer cells.
Publikation
Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterised by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters (BGCs), and their expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in repression of some BGCs through H3K4 trimethylation, allowed overproduction of 3 families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate (MeJA), an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited MeJA-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive JA-Ile synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally-related molecules, suppressed JA-Ile signalling by preventing degradation of JAZ proteins, the repressors of JA responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced IAA-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Publikation
In the current investigation, a series of heterocyclic derivatives of boswellic acids were prepared along with new monomers of 3-O-acetyl-11-keto-β-boswellic acid (AKBA, 1) 11-keto-β-boswellic acid (KBA, 2) and several new bis-AKBA and KBA homodimers and AKBA-KBA heterodimers. The effects of these compounds on the proliferation of different human cancer cell lines, viz., FaDu (pharynx carcinoma), A2780 (ovarian carcinoma), HT29 (colon adenocarcinoma), and A375 (malignant melanoma), have been evaluated. Thus, KBA homodimer 21 effectively inhibited the growth of FaDu, A2780, HT29, and A375 cells with EC50 values below 9 μM. In addition, compounds 7, 8, 11, 12, 15, 16, and 17 also exhibited cytotoxic effects for A2780, HT29, and A375 cancer cells. In particular, the pyrazine analog 8 was highly cytotoxic for A375 cancer cells with an EC50 value of 2.1 μM.
Publikation
Long-lasting and broad-spectrum disease resistance throughout plants is an ever-important objective in basic and applied plant and crop research. While the recent identification of N-hydroxpipecolic acid (NHP) and its central role in systemic plant immunity in the model Arabidopsis thaliana provides a conceptual framework toward this goal, Schnake et al. (2020) quantify levels of NHP and its direct precursor in six mono- and dicotyledonous plant species subsequent to attacks by their natural pathogens, thereby implicating (phloem-mobile) NHP as a general and conserved activator of disease resistance.