- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
We study the hyperactivation of α‐chymotrypsin (α‐ChT) using the acrylate polymer poly(2‐carboxyethyl) acrylate (PCEA) in comparison to the commonly used poly(acrylic acid) (PAA). The polymers are added during the enzymatic cleavage reaction of the substrate N‐glutaryl‐L‐phenylalanine p‐nitroanilide (GPNA). Enzyme activity assays reveal a pronounced enzyme hyperactivation capacity of PCEA, which reaches up to 950% activity enhancement, and is significantly superior to PAA (revealing an activity enhancement of approx. 450%). In a combined experimental and computational study, we investigate α‐ChT/polymer interactions to elucidate the hyperactivation mechanism of the enzyme. Isothermal titration calorimetry reveals a pronounced complexation between the polymer and the enzyme. Docking simulations reveal that binding of polymers significantly improves the binding affinity of GPNA to α‐ChT. Notably, a higher binding affinity is found for the α‐ChT/PCEA compared to the α‐ChT/PAA complex. Further molecular dynamics (MD) simulations reveal changes in the size of the active site in the enzyme/polymer complexes, with PCEA inducing a more pronounced alteration compared to PAA, facilitating an easier access for the substrate to the active site of α‐ChT.
Publikation
Chemical investigation of the aerial parts of Astragalus lehmannianus Bunge (Leguminosae) led to the isolation and identification of a new cycloartane triterpene glycoside – lehmanniaside (2\'-O-acetyl-3-β-O-D-xylopyranosyl-3β,6α,16β,24α-tetrahydroxy-20,25-epoxycycloartane). Its structure was elucidated by means of spectroscopic analysis (HR-MS, 1D and 2D NMR). Bioassays showed that lehmanniaside exhibits weak anthelmintic, antifungal, and cytotoxic activities.
Publikation
Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored Hypericum species, a previously undescribed atropisomeric C8-C8’ linked dimeric coumarin named bichromonol (1) was isolated from the stem bark of Hypericum roeperianum. The structure was elucidated by MS data and NMR spectroscopy. The absolute configuration at the biaryl axis was determined by comparing the experimental ECD spectrum with those calculated for the respective atropisomers. Bichromonol was tested in cell-based assays for cytotoxicity against MT-4 (CC50 ¼ 54 mM) cells and anti-HIV activity in infected MT-4 cells. It exhibits significant activity at EC50 ¼ 6.6–12.0 mM against HIV-1 wild type and its clinically relevant mutant strains. Especially, against the resistant variants A17 and EFVR, bichromonol is more effective than the commercial drug nevirapine and might thus have potential to serve as a new anti-HIV lead.
Publikation
Rational re-design of the substrate pocket of phenylpropanoid-flavonoid O-methyltransferase (PFOMT) from Mesembryanthe-mum crystallinum, an enzyme that selectively methylates the 3’-position (= meta-position) in catechol-moieties of flavonoids to guiacol-moieties, provided the basis for the generation of variants with opposite, i. e. 4’- (para-) regioselectivity and enhanced catalytic efficiency. A double variant (Y51R/N202W) identified through a newly developed colorimetric assay efficiently modified the para-position in flavanone and flavano-nol substrates, providing access to the sweetener molecule hesperetin and other rare plant flavonoids having an isovanil-loid motif.
Publikation
An extensive phytochemical study of a foliose lichen from Indonesia, Parmelia cetrata, resulted in the successful isolation of 13 phenol and depside derivatives (1–13) including the previously unreported depsides 3′-hydroxyl-5′-pentylphenyl 2,4-dihydroxyl-6-methylbenzoate (7), 3′-hydroxyl-5′-propylphenyl 2,4-dihydroxyl-6-methylbenzoate (8) and 3′-hydroxyl-5′-methylphenyl 2-hydroxyl-4-methoxyl-6-propylbenzoate (9). The anti-infective activity of isolated compounds was evaluated against the gram-negative bacterium Aliivibrio fischeri and the nematode Caenorhabditis elegans. 2,4-Dihydroxyl-6-pentylbenzoate (5) and lecanoric acid (6) induced growth inhibition of A. fischeri with inhibition values of 49% and 100% at a concentration of 100 µM, respectively. The antibacterial activity might be due to their free carboxyl group. A phenolic group at C4 also contributed to the antimicrobial activity of the depsides as shown for compounds 7 and 8, which caused 89% and 96% growth inhibition at 100 µM, respectively. Lecanoric acid (6) in addition possesses significant anthelmintic effects causing 80% mortality of C. elegans at 100 µg/mL.
Publikation
The chemical investigation of the root barks leaves and stem barks of Brucea antidysenterica J. F. Mill. (Simaroubaceae) led to the isolation of a new pregnane glycoside, named Bruceadysentoside A or 3-O-β-L-arabinopyranosyl-pregn-5-en-20-one (1) together with seventeen known compounds. Their structures were established from spectral data, mainly HRESIMS, 1 D and 2 D NMR and by comparison with literature data. Compounds 1, 2, 5, 6, 8, 10, 12 and 13 were tested in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. No substantial activities were recorded for 2, 10, 12 and 13 (up to 10 μM concentration). 1, 5 and 8 did not show strong anti-proliferative effects up to 100 μM, however, 6 exhibited a stronger anti-proliferative effect with IC50 values of ∼ 100 μM against PC-3 and ∼ 200 μM against HT-29.
Publikation
A series of new 11-keto-β-boswellic acid were partially-synthesized by modifying the hydroxyl and carboxylic acid functional groups of ring A. The structures of the new analogs were confirmed by detailed spectral data analysis. Compounds 4, 5 and 9 exhibited potent anti-cancer results against two human tumor cancer cell lines having IC50 value of MCF-7 (breast) and LNCaP (prostate): 123.6, 9.6 and 88.94 μM and 9.6, 44.12 and 12.03 μM, respectively. Additionally, a maximum nuclear fragmentation was observed for 4 (78.44%) in AKBA treated cells after 24 hr followed by 5 and 9 with (74.25 and 66.9% respectively). This study suggests that the presence of hydrazone functionality (4 and 9) has effectively improved the potency of AKBA. Interestingly, compound 5 with a lost carboxylic acid group of ring A showed comparable potent activity. Highly selective AKBA requires further modification to improve its bioavailability and solubility inside the cancer cells.
Publikation
In the current investigation, a series of heterocyclic derivatives of boswellic acids were prepared along with new monomers of 3-O-acetyl-11-keto-β-boswellic acid (AKBA, 1) 11-keto-β-boswellic acid (KBA, 2) and several new bis-AKBA and KBA homodimers and AKBA-KBA heterodimers. The effects of these compounds on the proliferation of different human cancer cell lines, viz., FaDu (pharynx carcinoma), A2780 (ovarian carcinoma), HT29 (colon adenocarcinoma), and A375 (malignant melanoma), have been evaluated. Thus, KBA homodimer 21 effectively inhibited the growth of FaDu, A2780, HT29, and A375 cells with EC50 values below 9 μM. In addition, compounds 7, 8, 11, 12, 15, 16, and 17 also exhibited cytotoxic effects for A2780, HT29, and A375 cancer cells. In particular, the pyrazine analog 8 was highly cytotoxic for A375 cancer cells with an EC50 value of 2.1 μM.
Publikation
Bioinspired, synthetic porphyrin complexes are important catalysts in organic synthesis and play a pivotal role in efficient carbene transfer reactions. The advances in this research area stimulated recent, “chemo‐inspired” developments in biocatalysis. Today, both synthetic iron complexes and enzymes play an important role to conduct carbene transfer reactions. The advances and potential developments in both research areas are discussed in this concept article.
Publikation
Catalyst discovery and development requires the screening of large reaction sets necessitating analytic methods with the potential for high‐throughput screening. These techniques often suffer from substrate dependency or the requirement of expert knowledge. Chromatographic techniques (GC/LC) can overcome these limitations but are generally hampered by long analysis time or the need for special equipment. The herein developed multiple injections in a single experimental run (MISER) GC‐MS technique allows a substrate independent 96‐well microtiter plate analysis within 60 min. This method can be applied to any laboratory equipped with a standard GC‐MS. With this concept novel, unspecific peroxygenase (UPO) chimeras, could be identified, consisting of subdomains from three different fungal UPO genes. The GC‐technique was additionally applied to evaluate an YfeX library in an E. coli whole‐cell system for the carbene‐transfer reaction on indole, which revealed the thus far unknown axial heme ligand tryptophan.