- Ergebnisse als:
- Druckansicht
- Endnote (RIS)
- BibTeX
- Tabelle: CSV | HTML
Publikation
Publikation
Leitbild und Forschungsprofil
Molekulare Signalverarbeitung
Natur- und Wirkstoffchemie
Biochemie pflanzlicher Interaktionen
Stoffwechsel- und Zellbiologie
Unabhängige Nachwuchsgruppen
Program Center MetaCom
Publikationen
Gute Wissenschaftliche Praxis
Forschungsförderung
Netzwerke und Verbundprojekte
Symposien und Kolloquien
Alumni-Forschungsgruppen
Publikationen
Publikation
We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.
Publikation
Hydroxycinnamoyl-CoA:tyramineN-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) catalyzes the transfer of hydroxycinnamic acids from the respective CoA esters to tyramine and other amines in the formation ofN-(hydroxycinnamoyl)amines. Expression of THT is induced byPhytophthora infestans, the causative agent of late blight disease in potato. The amino acid sequences of nine endopeptidase LysC-liberated peptides from purified potato THT were determined. Using degenerate primers, a THT-specific fragment was obtained by reverse transcription-polymerase chain reaction, and THT cDNA clones were isolated from a library constructed from RNA of elicitor-treated potato cells. The open reading frame encoding a protein of 248 amino acids was expressed in Escherichia coli. Recombinant THT exhibited a broad substrate specificity, similar to that of native potato THT, accepting cinnamoyl-, 4-coumaroyl-, caffeoyl-, feruloyl- and sinapoyl-CoA as acyl donors and tyramine, octopamine, and noradrenalin as acceptors tested. Elicitor-induced THT transcript accumulation in cultured potato cells peaked 5 h after initiation of treatment, whereas enzyme activity was highest from 5 to 30 h after elicitation. In soil-grown potato plants, THT mRNA was most abundant in roots. Genomic Southern analyses indicate that, in potato, THT is encoded by a multigene family.